UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

M.Sci.

3

۶

Physics 4421: Atom and Photon Physics

COURSE CODE	: PHYS4421
UNIT VALUE	: 0.50
DATE	: 03-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours 30 Minutes

Answer any THREE questions

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Planck constant: $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in a vacuum: $c = 3.0 \times 10^8 \text{ m s}^{-1}$

Mass of a proton: $m_p = 1.67 \times 10^{-27} \text{ kg}$

Mass of an electron: $m_e = 9.10 \times 10^{-31} \text{ kg}$

Unified atomic mass unit: $u = 1.66 \times 10^{-27} \text{ kg}$

Electronic charge: $e = 1.6 \times 10^{-19} \text{ C}$

Boltzmann constant: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

- 1. Draw an energy level diagram of helium showing the transitions:
 - (i) Electric Dipole
 - (ii) Spin Forbidden
 - (iii) Autoionizing.

In each case, give a typical lifetime. [3]

Describe, making use of schematic diagrams, a coincidence method by which the lifetime of the resonance transition in helium can be measured. [6]

Explain what is meant by a virtual state. [2]

The 2 ${}^{1}S$ level at 20.6 eV in helium can decay by two photon emission to the 1 ${}^{1}S$ ground state.

(i) Estimate the lifetime of the virtual state.	
(ii) What effect can the 2 3 S level at 19.8 eV have on the two photon decay?	[3]

Assuming the 1 ${}^{1}S \rightarrow n {}^{1}P$ excitation sequence to be hydrogenic, determine the lifetime of the n = 100 Rydberg level if the lifetime of 10 ${}^{1}P$ is 6 µs. [3] 2. Show how two counter-propagating laser beams can remove the Doppler bandwidth.

Describe a two photon absorption experiment in which the hyperfine levels in the $3^2S \rightarrow 5^2S$ level in sodium can be observed. The nuclear spin of sodium is 3/2.

Derive an expression for the non-resonant two-photon transition rate in terms of excitation cross section, lifetime of the virtual state and the laser intensity. [6]

In sodium, the 3 ${}^{2}S \rightarrow 5 {}^{2}S$ transition at 301.1 nm is probed using two photon absorption spectroscopy. The laser wavelength is 602.2 nm, and the laser intensity is 10 W m⁻². Noting that the 3 ${}^{2}S \rightarrow 3 {}^{2}P$ transition occurs at 589 nm, determine the two photon transition rate. Neglect hyperfine structure and take the value 10⁻²⁰ m² for the excitation cross section. [4]

3. Define the coherence time, τ_0 , of a light source with frequency v. [2]

Determine the coherence length of a light source of wavelength 800 nm and bandwidth 30 nm. [2]

Given that the degree of coherence, $\gamma(\tau)$, of a point light source is:

$$\gamma(\tau) = \left(1 - \frac{\tau}{\tau_0}\right) \exp(i\omega\tau),$$

where $\omega = 2\pi c / \lambda$. Show that the natural coherence arising from two incoherent points 'a' and 'b' of an extended light source in a Young's slits geometry is given by

$$\frac{1}{2} \left(1 - \frac{\tau_a}{\tau_0} \right) \left(1 - \frac{\tau_b}{\tau_0} \right) [1 + \cos \omega (\tau_b - \tau_a)],$$

where τ_a and τ_b are the respective time differences of the paths from the point sources 'a' and 'b' through the slits. [8]

Determine an expression for the transverse coherence. [4]

Estimate the distance, at ground level, over which reflected sunlight from a jumbo jet (size ~ 40 m) at a height of 10^4 m is coherent. [4]

[3]

[7]

à¥.

4.	In Sisyphus cooling, two counter-propagating linearly polarized laser beams, along the z-axes, with orthogonal polarization create a standing wave with a z-dependent polarization.	
	(i) Derive expressions showing how this polarization changes with z .	[6]
	(ii) Using the effect of light shifts on the 5 $^{2}S \rightarrow 5 ^{2}P$ transition in rubidium, explain how the atom is cooled.	[8]
	A rubidium atom (mass 85 u) cooled to 0.1 K has its residual velocity along the z direction. An electron beam of 50 eV incident along the x direction excites the $5^{2}S \rightarrow 5^{2}P$ transition at 780 nm. Determine the resultant motion of the rubidium atom when the electron is: (i) backscattered along the x direction	:
	(ii) scattered along the z direction.	[6]
5.	Explain the origin of the Lamb Dip in an inhomogeneously broadened laser transition.	[3]
	Give an expression showing the relationship of atomic velocity to the detuning of the laser and transition frequencies.	[3]
	Describe the method of Hansch to measure the Lamb Shift of the $n = 2$ levels in atomic hydrogen. Show clearly with an energy level diagram the transitions involved.	[6]
	State the different decay routes for the 2 ${}^{2}S_{1/2} \rightarrow 1 {}^{2}S_{1/2}$ transition in hydrogen. Which route is least probable?	[4]
	What would be the net effect on the lifetime of the 2 ${}^{2}S_{1}$ level if the Lamb Shift was:	

(i) zero?

1

\$

(ii) 5 GHz?

[4]

.....