
M.Sc. EXAMINATION

ASTMO41 Relativistic Astrophysics

21 May 2007 14:30-16:00
Duration: 1.5 hours

This paper has two Sections and you should attempt both Sections. Please read
carefully the instructions given at the beginning of each Section.

Calculators ARE permitted in this examination. The unauthorized use of material
stored in a pre-programmable memory constitutes an examination offence. Please
state on your answer book the name and type of machine used.

You are reminded of the following.

Physical Constants

Gravitational constant G 6.7× 10−11 N m2 kg−2

Speed of light c 3× 108 m s−1

Solar mass M� 2× 1030 kg
Solar radius R� 7× 105 km
1 kpc 3.09× 1019 m

Notation

Three-dimensional tensor indices are denoted by Greek letters α, β, γ, ... and take
on the values 1, 2, 3.

Four-dimensional tensor indices are denoted by Latin letters i, j, k, l, ... and take
on the values 0, 1, 2, 3.

The metric signature (+ - - -) is used.
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Useful formulae

The following results may be quoted without proof

Minkowski metric:

ds2 = ηikdxidxk = dx02 − dx12 − dx22 − dx32

.

Schwarzschild metric:

ds2 =
(
1− rg

r

)
c2dt2 − dr2(

1− rg

r

) − r2
(
dθ2 + sin2 θdφ2

)
.

Gravitational radius of body of mass M : rg = 2GM/c2 = 3(M/M�) km.

Kerr metric:

ds2 = (1− rgr

ρ2
)c2dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2+

2rgrac

ρ2
sin2 θdφdt,

where ρ2 = r2 +a2 cos2 θ, ∆ = r2−rgr+a2, a = J
Mc

and J is angular momentum.

For the Schwarzschild and Kerr metric: x0 = ct, x1 = r, x2 = θ and x3 = φ.
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SECTION A

Each question carries 20 marks. You should attempt ALL questions.

1. A spacecraft exploring a planet of mass m and radius r moves around the planet along
a circular orbit of radius R = 2r.

(a) Show that the redshift z of the radio signal emitted by a probe left on the surface
of the planet and received by the spacecraft is z ≈ Gm/(2c2r).

[10 Marks]

(b) Given r ≈ 3× 104 km and z ≈ 10−7, estimate the mean density of the planet.

[10 Marks]

2. A star forms a black hole of mass M .

(a) Show that to an order of magnitude its density at the moment immediately before
the formation of the black hole is

2× 1019

(
M

M�

)−2

kg m−3.

[15 Marks]

(b) For what mass is this equal to the density of water (103 kg/m3)?

[5 Marks]

3. (a) In a Newtonian calculation, show that the escape velocity from the surface of a
gravitating body is equal to the speed of light if the radius of the body is equal
to its gravitational radius.

[5 Marks]

(b) In the same approximation calculate the maximum distance reached by a body
thrown radially outward from the surface r = rg with a velocity v < c. Express
the answer in terms of rg and v. Discuss briefly how the answer would differ in a
general relativistic calculation.

[15 Marks]

3 [Next section overleaf.]



SECTION B

Each question carries 40 marks. Only marks for the best ONE question will be
counted.

1. A supermassive black hole of mass M is surrounded by a stellar cluster, which consists
of stars with mass m and radius r.

(a) Using simple Newtonian estimates, find the radius of tidal disruption, RTD, in
the gravitational field of the black hole.

[5 Marks]

(b) Find the critical black hole mass, Mcrit, such that for M < Mcrit the tidal
disruption takes place outside the black hole horizon. Express the answer in terms
of m and r. Estimate Mcrit if the cluster consists of giant stars with m = 30M�
and r = 10R�.

[15 Marks]

(c) Assume that the luminosity of AGNs and QSOs is generated by the disk accretion
of gas onto a supermassive black hole and that the gas comes from the tidal
disruption of stars. Assume for simplicity that the outer radius of this disk is
RTD and that its inner radius is 3rg. If the luminosity of the disk is proportional
to its surface area and the geometry is Euclidean, show that the maximum of L
is attained for M = 3−9/4Mcrit ≈ 0.08Mcrit.

[20 Marks]

2. (a) For a general black hole (not necessary Schwarzschild) explain why the surface
where g00 = 0 is called the limit of stationarity. If g11 depends only on the radial
coordinate, explain why the surface where g11(r) = 0 is called the event horizon.

[10 Marks]

(b) Determine the position of the limit of stationarity, rST , and the position of the
event horizon, rH , for a Schwarzschild black hole and describe briefly the behaviour
of the metric at r = rg.

[5 Marks]

(c) Using the coordinate transformation

cdτ = cdt +

√
rrg

r − rg

dr, dR = cdt +
r
√

r/rg

r − rg

dr,

show that the divergence of g11 at r = rg is related to the choice of the frame
of reference rather than to a real physical singularity. Explain briefly why the
previous frame of reference is inappropriate at r = rg.

[25 Marks]

4 [Next question overleaf.]



3. (a) Using the Kerr metric, find the surfaces corresponding to the limit of stationarity
(g00 = 0) and the event horizon (g11 = 0). Compare this with the case of a
Schwarzschild black hole.

[20 Marks]

(b) Show that the circle r = rg and θ = π/2, is the worldline of a photon moving
around the rotating black hole with angular velocity

Ω =
2ac

r2
g + 2a2

.

(Hint: put dr = 0, dθ = 0 and dφ = Ωdt into the Eq. for ds and show that
ds = 0.)

[15 Marks]

(c) An observer moves with angular velocity Ωobs along a circular orbit of radius r
within the equatorial plane of a rotating black hole (θ = π/2). Assuming that
the metric tensor has diagonal form in the frame of reference comoving with the
observer, show that

Ωobs = − argrc

r2(r2 + a2) + rgra2
.

[10 Marks]

5 [End of examination paper.]



M.Sc. Astrophysics ASTMO41, Relativistic Astrophysics 2007.
SOLUTIONS

SECTION A.

A1.

a) The photon gravitational mass is E/c2 = hν/c2.
From energy conservation

hν − Gm

R

hν

c2
= hνs −

Gm

R

hνs

c2
,

where νs is the frequency of the photon at the surface of the planet.
[5 Marks] (seen similar)

Thus
ν

νs
=

1− Gm
rc2

1− Gm
Rc2

.

Taking into account that in Newtonian limit Gm/rc2 � 1,
for redshift z we have

1 + z =
λ

λs
=

νs

ν
≈ 1− Gm

Rc2
+

Gm

rc2
,

hence
z =

Gm

rc2

(
1− r

R

)
=

Gm

rc2
(1− 1

2
) =

Gm

2rc2
.

[5 Marks] (seen similar)

b) From m = (4π/3)ρr3, where ρ is the mean density, we have

ρ =
m

4π
3 r3

=
3m

4πr3
.

From a) we have

m =
2rzc2

G
,

hence

z =
4π

3
1
2

Gρr2

c2
=

2πGρr2

3c2
.

[5 Marks] (seen similar)
Finally

ρ =
3zc2

2πGr2
=

3×
(
3× 108 m s−1

)2 × 10−7

2× 3.14× 6.67× 10−11 N m2 kg−2 × (3× 104 km)2

≈ 3× 3× 3
2× 3.14 · 6.67

1016−7+11−8−6 m2 s−2

m s−2 kg m2 kg−2 m2
≈ 7× 103 kg ·m−3.

[5 Marks] (seen similar)
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A2.

a) At the moment of BH formation the radius of the star is equal to its gravitational
radius,

[3 Marks](book work)
hence to an order of magnitude

ρ =
M

V
=

M
4π
3 r3

g

=
3M

4π
(

2GM
c2

)3 =
3M�

4π
(

2GM�
c2

)3

(
M

M�

)−2

=
3
4π

M�
(3 km)3

(
M

M�

)−2

=

[7 Marks](book work)

3 · 2× 1030 kg
4 · 3.14 · 33 × 109 m3

(
M

M�

)−2

=
1021

10 · 2 · 3
kg· m−3

(
M

M�

)−2

≈ 2×1019 kg· m−3
(

M

M�

)−2

.

[5 Marks] (seen similar)

b) If ρ = 103 kg ·m−3,

M = M�

√
2× 1019

103
≈ 1.4× 108M�.

[5 Marks] (seen similar)
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A3.

a) For escape velocity we have
v2
esc
2
− GM

r
= 0,

hence

vesc =

√
2GM

r
,

if

r =
2GM

c2
, vesc =

√
2GMc2

2GM
= c.

[5 Marks] (book work )

b) If v < vesc, the body being thrown up from the surface of gravitating object can reach
the radius R, determined by

v2

2
− GM

r
= −GM

R
,

hence
GM

R
=

GM

r
− v2

2
=

1
2
(v2

esc − v2),

[5 Marks] (book work ) then

GM

r

r

R
=

1
2
(v2

esc − v2),

or
r

R

1
2
v2
esc =

1
2
(v2

esc − v2),

finally

R = r
v2
esc

v2esc − v2
.

Let, for example, take r = rg (hence, vesc = c) and v = c/2, in this case

R = rg
c2

c2 − c2

4

=
4
3
rg > rg.

[5 Marks] (seen similar ) Thus
in Laplacian version of BH the body can not reach infinity, but can reach some radius larger
than rg, while according to General Relativity any body initially at r = rg can move only
inward with decreasing radius.

[5 Marks](book work)
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SECTION B.

B1

a) To an order of magnitude gravitational force experienced by a particle of mass δm
on the surface of the star from the star itself is Fs ≈ Gmδm/r2, while the tidal force
producing a relative acceleration between the the same particle and the centre of the star
to an order of magnitude is FTD ≈ GMδmr/R3, hence defining the tidal radius as the
radius at which Fg ≈ FTD, we have

Gmδm

r2
≈ GMδmr

R3
TD

,

and finally, RTD ≈ r(M/m)1/3.
[5 Marks] (seen similar)

b) For M = Mcrit from equality

RTD = r�

(
M

M�

)1/3

= rg =
2GM

c2
= 3 km

M

M�
,

we have

R�
r

R�

(
Mcrit

M�

)1/3 ( m

M�

)−1/3

=
2GM�

c2

Mcrit

M�
,

hence (
Mcrit

M�

)2/3

=
R�
rg�

(
r

R�

)(
m

M�

)−1/3

,

[5 Marks] (seen similar) thus

Mcrit

M�
=

(
R�
rg�

)3/2 (
r

R�

)3/2 ( m

M�

)−1/2

≈
(

7× 105 km
3 km

)3/2 (
r

R�

)3/2 ( m

M�

)−1/2

≈

108
(

r

R�

)3/2 ( m

M�

)−1/2

.

[5 Marks] (seen similar) For
m = 30M� and r = 10R�we have

Mcrit ≈ 109 1
31/2

M� ≈ 6.5× 108M�.

[5 Marks] (seen similar)
c) Luminosity is

L = kS = kπ[R2
TD − (3rg)2],

where k is the coefficient of proportionality between L and surface area S, hence

L = kπ[R2
TD(Mcrit)

(
M

Mcrit

)2/3

− 9r2
g(Mcrit)

(
M

Mcrit

)2

].

[5 Marks] (unseen )
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Taking into account that

RTD(Mcrit) = rg(Mcrit) =
2GMcrit

c2
,

we have
L ∼ x2/3 − 9x2,

where x = M/Mcrit.
[5 Marks] (unseen )From

dL

dx
∼ 2

3
x−1/3 − 18x = 0,

we have
2
3
x−1/3 = 18x, x4/3 =

1
27

, x = 3−
9
4 ≈ 0.08.

Thus
M ≈ 0.08Mcrit.

[10 Marks] (unseen )
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B2

a) Let us consider a particle in rest,i.e. put dr = dθ = dφ = 0. In this case

ds2 = c2g00dt2 = 0, if g00 = 0,

which corresponds to propagation of light.Hence in order to be at rest relative to the
Schwarzschild frame of reference any particle with non-zero rest mass should move with
the velocity of light relative to locally-inertial frame of reference, but this is impossible.
In other words nothing can be at rest at the surface g00 = 0.

[5 Marks] (book work)

Let us consider a surface F (r) = const and let

ni = F,i = δ1
i

dF

dr

is the outward normal to this surface. If g11 = 0, we have

giknink = gikδ1
i δ

1
k

(
dF

dr

)2

= g11
(

dF

dr

)2

= 0,

which means that ni directed outward is null vector. In other words, it can not be 4-
velocity of any particle with non-zero rest mass. Thus no particle can move outward from
such surface, that is why such a surface is called the event horizon.

[5 Marks] (book work)
b) Taking into account that the Schwarzschild metric is diagonal we have

g11 =
1

g11
= −(1− rg

r
)−1 →∞, when r → rg,

which means that the Schwarzschild metric is singular at r = rg. On other hand

g00 = 1− rg

r
→ 0, when r → rg,

hencerST = rH = rg.
[5 Marks] (book work )

c) From the given transformation of coordinates we have

cdτ−dR =
(
r1/2r1/2

g − r3/2r−1/2
g

) dr

r − rg
= r1/2r1/2

g (1− r

rg
)

dr

r − rg
= −r1/2

r
1/2
g

(r − rg)dr

(r − rg)
= − 2

3r
1/2
g

d(r3/2),

hence

dr =
(

rg

r

)1/2

(dR− cdτ)

and
cτ −R = C − 2

3r
1/2
g

r3/2.

Choosing the constant C = 0 so that r = 0 corresponds to R = cτ = 0, we have

r = [
3
2
r1/2
g (R− cτ)]2/3,
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[10 Marks] (seen similar)
then

cdt = cdτ − r1/2r
1/2
g

r − rg

r
1/2
g

r1/2
(dR− cdτ) = cdτ − rg

r − rg
(dR− cdτ) =

(r/rg)cdτ − dR

(r/rg)− 1
,

and

dR− cdτ =

√
r/rg

r − rg
(r − rg) .

[5 Marks] (seen similar)
Substituting dr,cdt and r into the original metric we have

ds2 =
(

1− rg

r

) (
cdτ − rg

r

)2(
1− rg

r

)2 − rg

r

(dR− cdτ)2

1− rg

r

− r2
(
dθ2 + sin2 θdφ2

)
=

1
1− rg

r

[
c2dτ2

(
1− rg

r

)
+ dR2

(
r2
g

r2
− rg

r

)
− 2cdτdR

(
rg

r
− rg

r

)]
−r2

(
dθ2 + sin2 θdφ2

)
=

c2dτ2 − rg

r
dR2 − r2

(
dθ2 + sin2 θdφ2

)
.

[5 Marks] (seen similar)
One can see that in this new frame of reference there is no singularity at r = rg. This
means that the divergence of g11 is related with bad choice of previous frame of reference
rather than with any physical singularity. The previous frame of reference is bad at r−rg,
because it is formed by bodies in rest, which means that it is rigid, but gravitational forces
are so strong when r → rg that rigid frame of reference is impossible.

[5 Marks] (book work)
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B3

a) For the Kerr metric the limit of stationarity is determined from g00 = 0.Thus we have
ρ2 = rgrST or

r2
ST − rST rg + a2 cos2 θ = 0.

So we have outer and inner limits of stationarity. The larger solution of this equation is

rST =
rg

2
+

√(
rg

2

)2

− a2 cos2 θ.

[5 Marks] (book work )
For the Kerr metric the horizon is determined from g11 = 0.Thus we have ∆ = 0:

r2
H − rgrH = a2 = 0.

So we have outer and inner horizons. The larger solution of this equation is

rH =
rg

2
+

√(
rg

2

)2

− a2.

[5 Marks] (book work )
In Schwarzschild case, when a = 0 we have

rST =
1
2
(rg + rg) = rg

and
rH =

1
2
(rg + rg) = rg,

hence rST = rH .
[5 Marks] (seen similar )

b) For dr = dθ = 0, θ = π/2 and dφ = Ωdt

ds2 = (1− rg

r
)c2dt2 − (r2 + a2 +

rga
2

r
)Ω2dt2 +

2rgac

r
Ωdt2 =

dt2[c2(1− rg

r
)− (r2 + a2 +

rga
2

r
)Ω2 +

2rgac

r
Ω] = dt2[−(r2

g + 2a2)Ω2 + 2acΩ] =

−dt2Ω(r2
g + 2a2)[Ω− 2ac

r2
g + 2a2

] = 0.

The fact that ds = 0 means that this is the world line of light.
[10 Marks] (unseen )

c) If the observer moves with angular velocity Ωobs then in co-moving frame of reference

dφobs = dφ− Ωobsdt,

hence
ds2 = g00c

2dt2 + 2g03cdtdφ + g33dφ2 =

g00c
2dt2 + g33

(
dφ2

obs + 2Ωobsdtdφobs + Ω2
obsdt2

)
+ 2g03cdt(dφobs + Ωobsdt).
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[10 Marks] (seen similar )
From the condition that the metric tensor is diagonal we have

2g03c + 2g33Ωobs = 0,

hence
Ωobs = −cg03

g33
= − argrc

r2(r2 + a2) + rgra2
.

[5 Marks] (unseen )
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