UNIVERSITY COLLEGE LONDON

٤.,

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

Physics 4421: Atom and Photon Physics

COURSE CODE	: PHYS4421
UNIT VALUE	: 0.50
DATE	: 06-MAY-05
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

05-C1100-3-30 © 2005 University College London

TURN OVER

Answer any THREE questions

34

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question

Electronic charge: $e = 1.6 \times 10^{-19} \text{ C}$

Mass of proton: $m_p = 1.67 \times 10^{-27}$ kg

Planck's constant: $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in vacuum: $c = 3.0 \times 10^8 \text{ m s}^{-1}$

Boltzmann constant: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

1. Explain how an electron beam can be used to produce coherent excitation in a [4] three-level system. Give the wavefunction which describes a coherent superposition of states $|1\rangle$ [2] and |2). Define all parameters in the wavefunction. The natural lifetime of state $|1\rangle$ is 3 ns, and the frequency separation between the states $|1\rangle$ and $|2\rangle$ is 1500 MHz. Determine the maximum lifetime of state [2] $|2\rangle$ in order that quantum beats occur. Now take the lifetimes of states $|1\rangle$ and $|2\rangle$ to be equal at 1.5 ns. Determine the design parameters in a beam foil experiment such that quantum beats can be produced and observed. Assume the spatial resolution to be 1 mm. [4] Define the coherence length of a light source. [1] Explain the terms correlated and non-correlated events. [1] Estimate the coherence length of the radiation emitted by: A street lamp. (i) A water filled radiator. [6] (ii) 1 PLEASE TURN OVER PHYS 4421/2005

2. Explain what is meant by a virtual state.

Estimate the lifetime of an isolated virtual atomic state in a radiation field of [3]

A 10 eV electron is elastically scattered through 180° by a helium atom which is at a temperature of 300 K, and is initially moving in a direction orthogonal to the electron's motion. Determine the deflection angle of the helium atom. [4]

Describe a method for measuring the lifetime of a metastable atomic state using a pulsed electron beam. [4]

In Simultaneous Electron-Photon Excitation (SEPE) an electron and photon combine to excite a stationary state.

- (i) Draw the Feynman diagrams for all possible first-order processes and explain the associated excitation processes. [4]
- (ii) Describe an experiment in which SEPE of He $(2^{3}S_{1})$ can be measured. [3]

3.	Briefly outline the origins of fluctuations in a many-atom laser.	[3]
	Describe the operation of a single atom laser which operates on the Rydberg $63 {}^{2}P_{3/2} \rightarrow 61 {}^{2}D_{3/2}$ transition in rubidium at 21.5 GHz.	[8]
	What properties of Rydberg atoms make them a suitable choice for single atom maser operation?	[2]
	If the lifetime of Rb (63 $^{2}P_{3/2}$) is 1 ms and the transit time in the cavity is 30 μ s, discuss the interaction of the cavity single mode radiation with the atom.	[3]
	Discuss the output of the single atom laser using the normalized variance of Poisson statistics.	[2]
	Determine the number of Rb (63 ${}^{2}P_{3/2}$) atoms required to sustain super- Poissonian statistics in the laser. Take the Rabi frequency to be 50 kHz.	[2]

d

[2]

2

Explain the physical origin of 4.

545

(i)	natural		
(ii)	pressure	•	
(iii)	Doppler		
broade	ning in a gaseous medium.	[3	3]

[6] Explain the principle of saturation absorption spectroscopy.

Using a pump and probe method, describe an experiment to measure the Lamb shift in the n = 2 levels of atomic hydrogen. [9]

What effect does the Lamb shift in the n = 3 levels have on this measurement?[2]

5.	Explain what is meant by Optical Pumping.	[2]
	Using the $5^2S \rightarrow 5^2P$ transition in Rb, explain how the atoms become orientated using σ^+ light in Zeeman pumping. Neglect the hyperfine struct	ture. [5]
	What happens to the magnetization of the rubidium vapour when σ light used?	is [1]
	In atomic molasses cooling, the wavelength must be chirped. Explain why	y. [2]
	Describe the trapping process in a Zeeman trap.	[4]
A sodium atom (mass 23 u) at 300 K is confined to motion in the z direction and is subjected to optical molasses cooling. The laser beam employed propagates in the z direction and is resonant with the 3 ${}^{2}S_{1/2} \rightarrow 3 {}^{2}P_{3/2}$ transition at 589 nm.		ion
	 (i) Calculate the velocity change in a sodium atom for one single pho absorption and emission cycle. 	oton
	(ii) How far will the atom travel before it is slowed to 100 m s ⁻¹ ? Assu that the laser remains on resonance and that the lifetime of the soc transition is 15.9 ns.	ume lium [6]

PHYS 4421/2005

END OF PAPER

ŧ.,

3