University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

Physics 4421: Atom and Photon Physics

COURSE CODE	: PHYS4421
UNIT VALUE	: 0.50
DATE	: 13-MAY-04
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

TURN OVER

Answer any THREE questions

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Electronic charge : $e = 1.6 \times 10^{-19} \text{ C}$

Mass of proton : $m_p = 1.67 \times 10^{-27} \text{ kg}$

Planck constant : $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in a vacuum : $c = 3.0 \times 10^8 \text{ m s}^{-1}$

First Bohr orbit : $a_0 = 5.29 \times 10^{-11} \text{ m}$

Permittivity of free space: $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ F m}^{-1}$.

Boltzmann constant : $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

[Part Marks]

[1]

[2]

[4]

[4]

[3]

1. Define oscillator strength (f_{ki}) .

Give the oscillator balance equation for transitions between the levels $|i\rangle$ and $|k\rangle$ allowing for the degeneracy of the levels.

The transition probability A_{ki} for spontaneous emissions from $|k\rangle \rightarrow |i\rangle$ is

$$A_{ki} = \left[\frac{e^2 2}{3\varepsilon_0} \frac{\omega_{ki}^3}{hc^3}\right] \left| \left\langle i | r | k \right\rangle \right|^2.$$

Derive an expression for A_{ki} involving the statistical weights of the levels. Explain carefully the influence of the degeneracy of the upper, $|k\rangle$, and lower, $|i\rangle$, states.

Determine A_{ki} for a ${}^{1}P_{1} \rightarrow {}^{1}S_{0}$ transition in the optical region at 600 nm where the total matrix element for the transition is $4a_{o}$.

Derive an expression for f_{ki} in terms of the degenerate transition matrix elements.

Assume the radiative decay rate to be
$$\frac{e^2 \omega^2}{6\pi \varepsilon_0 m_e c^3}$$
. [3]

Atomic hydrogen is in the 3d state. Which transitions to the *np* and *mf* states are allowed and which have negative oscillator strengths?

Given $\Sigma_n (3d \rightarrow np) = -0.402$ and $\Sigma_m (3d \rightarrow mf) = 1.302$ use the Thomas-Kuhn-Reiche sum rule to determine the fraction of the oscillator strength in the continuum. [3]

1

2. What conditions must apply during the atomic excitation for Quantum Beats to be observed?

[2]

[10]

Consider an atom of ground state $|g\rangle$ with the excited states $|\alpha_1\rangle$ and $|\alpha_2\rangle$ undergoing coherent excitation. Derive an expression for the observed intensity of the Quantum Beats in terms of the decay constants and frequency separation of the states.

Describe a beam foil apparatus which can be used to measure quantum beats. [4]

A helium ion, He⁺, is incident on a foil of thickness 100 nm. Charge capture in the foil produces helium $3 {}^{3}P_{0,1,2}$ in which the fine structure separation of the J = 1 and J = 2 levels is 658 MHz.

What is the minimum kinetic energy of the He⁺ beam required in order to

(i) produce coherent excitation of the J = 1 and J = 2 levels and

(ii) observe the quantum beats if the resolution of the apparatus is 10^{-3} m? [4]

3.	Explain what is meant by a Virtual state.	[2]
	Derive expressions for the two photon ionization rate of an atom as a function of laser intensity I when the intermediate state is (a) Real and (b) Virtual.	[4]
	For threshold two photon ionization estimate the ratio of the transition probabilities when the intermediate state is real compared to when it is virtual. Assume an ionization potential of 3 eV.	[2]
	If a real state exists at 1 eV , determine the life time of the virtual state in threshold two photon ionization.	[2]
	Explain how the Doppler width is reduced to first order in two photon absorption spectroscopy.	[4]
	Describe an experiment to measure the hyperfine separations in the $3^2 S_{1/2} \rightarrow 5^2 S_{1/2}$ two photon transition in sodium. The nuclear spin of sodium is $3/2$.	[6]

4. Distinguish between Longitudinal and Transverse modes in a laser cavity.	[2]
Show that the mode spacing, $\Delta \omega$, of Longitudinal modes in a laser cavity of length L is $\Delta \omega = \pi c L^{-1}$.	[2]

If the coherence length of the radiation is λ_c , what is the mode distribution when $\lambda_c >> L$ and when $\lambda_c << L$? Give expressions for the average intensity in each case when the distribution of the light is Lorentzian.

Show that the fringe visibility, V, in a Young's experiment can be written as

$$V = \frac{2u_1u_2 \exp[-\gamma \Delta s / c]}{|u_1|^2 + |u_2|^2},$$

where γ is the band width of the radiation, Δs is the path length difference and u_1 and u_2 are geometric factors.

Assume the first order correlation function to be

3

$$2I(\varepsilon_0 c)^{-1} \exp(i\omega\tau - \gamma |\tau|),$$

where ω is the radiation frequency, *I* is the light intensity and τ is the path length time difference.

How is V influenced by the use of coherent or chaotic light? [2]

When $\omega = 3 \times 10^{15}$ Hz and $\gamma = 6 \times 10^{11}$ Hz how many intensity oscillations will occur at exp(-2) of the maximum visibility? [4]

[4]

[6]

5. Expla	ain how optical molasses cooling works and the role of frequency chirping.	[3]
Sodiu sodiu	Im, ²³ Na, is being cooled in a molasses experiment. The lifetime of the m transition is 16×10^{-9} s and the frequency is 5×10^{14} Hz.	
(i)	Determine the velocity change of a sodium atom associated with a single photon recoil.	[1]
(ii)	Estimate the number of absorption and emission cycles required to cool the sodium from 500 K to 0.6 K.	[1]
(iii)	How long will it take to cool the sodium to 0.6 K?	[1]
Expl	ain what is meant by the Doppler cooling limit.	[4]
Consider sodium in two counter-propagating resonant laser beams which have a		

Consider sodium in two counter-propagating resonant laser beams which have a damping coefficient β . When the detuning δ is negative, show that the steady state kinetic energy is

$$\frac{h\gamma}{16\pi}\left[\frac{2|\delta|}{\gamma}+\frac{\gamma}{2|\delta|}\right],\,$$

and determine an expression for the Doppler cooling limit temperature.

[10]

Take $\beta = \frac{8hk^2\delta}{\pi\gamma\left[1 + \left(\frac{2\delta}{\gamma}\right)^2\right]}$,

where γ is the line width and k is the wave vector.