UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

.

M.Sci.

Physics 4421: Atom and Photon Physics

COURSE CODE	: PHYS4421
UNIT VALUE	: 0.50
DATE	: 20-MAY-03
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

03-C1088-3-40 © 2003 University College London

TURN OVER

Answer any THREE questions.

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Planck's constant $h = 6.63 \times 10^{-34}$ Js

1. Using helium as an example draw an energy level diagram and denote Electric Dipole, Magnetic Dipole and Auto Ionizing transitions. In each case give typical lifetime values.

In hydrogen the $2^2 S_{\frac{1}{2}}$ level has two single photon decay routes and one two-photon decay route. Denote them on an energy level diagram. In each case give typical lifetime values.

In the two-photon decay of $2^2 S_{\frac{1}{2}}$ estimate the lifetime of the virtual state. [4] Describe the electron-photon coincidence method used to measure the lifetime of the $2^{1}P \rightarrow 1^{1}S$ transition in helium. [5]

[5]

Assuming the hydrogenic nature of sodium determine the lifetime of the 60 2 P level if the lifetime of the 10 2 P is 10 μ s. Assume a common lower level. [2]

A single atom of lifetime τ and transition frequency _ is placed in a cavity. Explain, without proof, how the tuning of the cavity affects the lifetime τ . [4] 2. A single point source, S, emits quasi monochromatic light along two paths 1 and 2 defined by co-planar apertures P_1 and P_2 . The light signal is observed at Q. The axis SQ is perpendicular to the plane containing P_1 and P_2 .

Show that the light intensity *I* at Q is given by

$$I = I_1 + I_2 + 2\sqrt{I_1}I_2$$
 Re γ_{12} (τ)

where γ_{12} (τ) is the complex degree of Partial Coherence and τ is the time difference for propagation along the paths SP₁Q and SP₂Q. I_1 and I_2 are the intensities observed at Q along the sperate paths SP₁Q and SP₂Q respectively. [12]

Explain how $\gamma_{12}(\tau)$ can be measured experimentally and show that the fringe visibility is given by $|\gamma_{12}(\tau)|$ for $I_1 = I_2$.

[8]

3.	Explain the physical origins of Natural, Pressure and Doppler broadening. Give typical values for the bandwidth in each case.	[3]
	Explain how Hole Burning and Two Photon Spectroscopy reduce or remove the bandwidth.	[8]
	Using these spectroscopic techniques describe how the Lamb Shift of the ground state of hydrogen can be measured.	[9]

3

4. Two interacting light beams with space time coordinates (r_1,t_1) and (r_2,t_2) and electric fields *E* have a correlation function

$$\langle \boldsymbol{E}(\mathbf{r}_{1},\mathbf{t}_{1})\boldsymbol{E}(\mathbf{r}_{2},\mathbf{t}_{2})\rangle = \frac{2I}{\varepsilon_{0}c} \exp(i\omega\tau - \gamma |\tau|)$$

where the symbols have the usual meanings.

Write down the expression for the First Order Correlation Function (g_{12}) and derive g_{12} for a chaotic light field of bandwidth γ . [4]

How does the coherence time, τ_c , of the light influence fringe visibility in a Young's slit experiment? Estimate the coherence time and coherence length for a Doppler broadened light source.

[7]

[3]

In what way does the "interference" in a Young experiment differ from that in a Hanbury-Brown-Twiss experiment?

Describe the Hanbury-Brown-Twiss experiment and show how the Second Order Correlation function is obtained. [6]

PHYS 4421/2003

5.	Explain what is meant by Optical Pumping.	[2]
	Using the $5^2 S \rightarrow 5^2 P$ transition in Rb explain how the atoms become orientated using σ^* light in Zeeman pumping. Neglect the hyperfine structure.	1 [5]
	What happens to the magnetization of the rubidium vapour when σ^{-} light is used?	[1]
	In atomic molasses cooling using laser beams the laser wavelength must be chirped. Explain why!	[2]
	Describe the trapping process in a Zeeman trap.	[4]
	In Sisyphus cooling a polarization gradient is employed. Explain how this is established and the role of Light Shifts in the cooling process.	[6]

END OF PAPER

.

٩.

1

5