UNIVERSITY COLLEGE LONDON

1

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

8

1 8

Physics 3C43: Lasers and Modern Optics

COURSE CODE	: PHYS3C43
UNIT VALUE	: 0.50
DATE	: 04-MAY-05
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

TURN OVER

Answer all 6 questions from section A and 2 questions from section B.

ŧ

The numbers in square brackets in the right-hand margin indicate the provisional allocation of marks for each question or subsection of a question.

FORMULAE AND CONSTANTS

 $c = 3 \ge 10^8 \text{ m/s}$ $k = 1.38 \ge 10^{-23} \text{ J/K}$ $h = 6.64 \ge 10^{-34} \text{ J} \cdot \text{s}$

SECTION A

1.	In the context of ray transfer matrices, state the paraxial approximation.	
	optics.	[2]
	Given that ray transfer matrices are two-dimensional, is this dimensionality a consequence of the paraxial approximation?	[2]
2.	Define the first and the second focal points for a complex optical system, such as a thick lens.	[3]
	A beam is propagating from left to right and encounters two optical subsystems (1, and then 2) characterised by the matrices M_1 and M_2 respectively. Give the optical matrix of	[2]
	Give the condition on the optical matrix for the whole system to behave as a telescope.	[2]
3.	With the aid of a schematic energy level diagram give a brief explanation of the working mechanism of the Ar-ion laser. Explain the different mechanisms for populating the laser level.	[3] [3]
4.	An Ar-ion laser whose emission has been tuned on the 457.9 nm line has an internal beam waist of 0.4 mm. Determine the beam divergence. By what factor would the divergence improve if we tuned the laser on the 363.8 nm line? Calculate the brightness of a 1 mW-beam at the wavelength of 363.8 nm.	[3] [2] [3]
5.	Define the Faraday effect.	[2]
	Give a quantitative expression of the rotation of the polarisation angle due to the Faraday effect in terms of the Verdet constant V and of the other relevant physical quantities. Consider a beam at 589 nm entering a cube of ZnS ($V=0.225 \text{ min/Gcm}$) whose side is	[2]
	IU cm long, and that is subject to a field of 9 G. What is the rotation angle at the exit of the cube?	[2]

6. The non-linearity of the refractive index n (for crystalline materials) is usually expressed as

$$\frac{1}{n^2} = \frac{1}{n_0^2} + rE + RE^2$$

where r and R are constant for the medium.

What does the symbol E stand for?

Is the Kerr effect related to the linear or non-linear term (in E) in the equation above?[2]Give the expression that describes the difference between extraordinary and ordinary
refractive index in terms of the intensity and wavelength of the radiation.[3]

¥

[1]

SECTION B

a) State the meaning of the symbols in the ray transfer matrix of a refracting spherical surface expressed as

1	0	
$1(n_{1})$	n	[2]
$\left[\overline{R}\left(\overline{n'}^{-1}\right)\right]$	<u>n'</u>]	

- b) Find the numerical value of the ray transfer matrix for a thick convex lens, in air, and for which the radius of curvature is 10 cm, the refractive index is 4, and the thickness t is 0.3 cm.
- c) With reference to a generic complex optical system, derive a symbolic expression for the distance of the first focus from the first principal plane in terms of the generic ray transfer matrix expressed as follows:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
[4]

- d) Consider an optical system consisting of two thin lenses A and B made of the same glass with refractive index n = 1.6 and with radii $R_{A1} = -R_{A2} = 6$ cm and $R_{B1} = 8$ cm, $R_{B2} = -12$ cm.
 - Calculate the ray transfer matrices M_A and M_B for both lenses.
 - Determine an expression for the effective focal length of the system in terms of L and the lenses' focal lengths f_A and f_B , when the lenses are spaced a distance L. Write down the numerical value of the equivalent focal length if L is 5 cm.
 - Find a symbolic expression in terms of the radii of curvature of the lenses, $d(1/f_{eq})$

the distance L, and the refractive index n, for which $\frac{d(1/f_{eq})}{dn} = 0$,

where f_{eq} is the equivalent focal length (assume the lenses are in air). What is the numerical value of L in the case of the system discussed in this question?

3

7.

۴,

[6]

[4]

[6]

[8]

- 8.
- a) A laser cavity is constituted by a planar Fabry-Perot etalon whose mirrors have reflectivity $R_1 = 0.91$ and $R_2 = R_1/2$ respectively. The separation of the mirrors is L = 1m. The laser medium is characterised by a loss coefficient $\gamma = 10$ m⁻¹. The lasing transition occurs at a wavelength of 8 µm, and it is inhomogeneously broadened with a linewidth $\Delta v = 50$ MHz. The Einstein A coefficient of the upper laser level is 150 s⁻¹. Derive a symbolic expression for the round trip gain of the cavity in terms of the reflectivities of the resonator's mirrors, the cavity length, and the gain and loss coefficient.

[5]

[2]

[2]

Ň

- b) Derive an expression for the threshold small signal gain coefficient k_{th} [4]
- c) Calculate the numerical value of k_{th} for the values of R_1 , R_2 and γ given above.
- d) Derive the steady state relation between the value of the small signal gain coefficient at threshold and at saturation. What would happen if this relation was not satisfied?
- e) State the meaning of the various symbols in the expression of the gain coefficient given below and calculate the value of the inversion population (in cm⁻³) necessary to reach threshold.

$$\kappa(\nu) = g(\nu) \left(N_2 - \frac{g_2}{g_1} N_1 \right) B_{21} \frac{nh\nu}{c}$$
[8]

f) Consider a two-level system for which only absorption and spontaneous emission are possible. Assume also that the ratio of the populations of the two levels follows a Boltzmann statistics with degeneracies equal to 1 for both levels. Show that the density of radiative energy $(\rho(v))$ per unit frequency v that can be calculated for such a system, is inconsistent with Planck's equation:

$$\rho(\nu) = \frac{8\pi h\nu^3}{c^3} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$
[9]

Where h is Planck's constant, c is the speed of light, k is Boltzmann's constant, and T the absolute temperature.

9. An Ar-ion laser beam at 514 nm is focused by a thin lens of focal length f=10 cm. The lens is located at a distance z = 30 cm from the original beam waist, which is located at z = 0. The beam size at z = 10 cm is 500 μ m.

a)	Derive an expression for the size of the original beam waist, and calculate its size.	[10]
b)	Using the ABCD system matrix determine the position of the new beam waist.	[10]
c)	Calculate the size of the new beam waist.	[4]
d)	Calculate what happens to the size and position of the beam waist if the focal length of the thin lens is doubled.	[4]
e)	Give the value of the collimated beam length.	[2]

- 10. Consider a thin convex lens with focal length f.
 - a) Derive an expression for the magnification of an object that is placed at a distance d < f from the lens. [5]
 - b) Derive an expression for the total magnification when the same object (at the same distance d) is looked at through two coaxial and adjacent thin lenses, of focal lengths f_1 and f_2 .
 - c) In the case f = 5 cm, $f_1 = 5$ cm, $f_2 = 4$ cm, and d = 3 cm find the numerical value of the magnification in the cases discussed in a) and in b) above. [6]
 - d) With the aid of a labelled diagram explain and comment the nature of the image in the cases d < f and d > f. [6]
 - e) An image of an object is formed on a screen by a lens. Leaving the lens position fixed, the object is moved to a new position and the image screen is moved until it again receives a focused image. If the two object positions are d_1 and d_2 and if the transverse magnification of the image is M_1 and M_2 respectively, show that the focal length of the lens can be written as:

$$f = \frac{d_2 - d_1}{\frac{1}{M_1} - \frac{1}{M_2}}$$
[8]

f) Under which condition is $M_1 = M_2$? [2] Why is the equation derived in 10.e) no longer usable if $M_1 = M_2$? [1]

[2]