UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sc. M.Sci.

١,

5

Physics 3C24: Nuclear and Particle Physics

COURSE CODE	:	PHYS3C24
UNIT VALUE	:	0.50
DATE	:	10-MAY-06
TIME	:	14.30
TIME ALLOWED	:	2 Hours 30 Minutes

ANSWER ALL QUESTIONS IN SECTION A AND TWO QUESTIONS FROM SECTION B.

The numbers in square brackets at the right-hand edge of the paper indicate the provisional allocation of maximum marks for each subsection of a question.

SECTION A	
------------------	--

Question 1.

Identify the fundamental fermions of the Standard Model and their electrical charges. [4 marks] Which fundamental interactions do they participate in and what are the gauge bosons which carry these interactions? [3 marks]

Question 2.

Briefly describe three main processes by which photons interact with matter.

[6 marks]

Question 3.

Explain what is meant by spontaneous fission.	
	[2 marks]
Why is spontaneous fission only possible for heavy nuclei?	[4
	[4 marks]

Question 4.

Explain what is meant by the lepton universality principle. [2 marks] Briefly explain the terms colour confinement and asymptotic freedom. [4 marks]

Question 5.

Name and briefly describe three main pieces of evidence for the existence of quarks. [8 marks]

Question 6.

Why is the decay of a free proton forbidden in the Standard Model while a β^+ decay can take place within a nucleus?

[3 marks]

r)

ø

The semi-empirical mass formula (SEMF) in terms of binding energy B_E

 $B_{E}(Z,A) = a_{v}A - a_{s}A^{2/3} - a_{c}Z^{2}A^{-1/3} - a_{a}(Z - A/2)^{2}A^{-1} \pm \delta a_{p}f(A)$

can be explained invoking three different nuclear models: the liquid drop model, the Fermi gas model and the shell model. Identify which model explains each individual term of the SEMF.

[4 marks]

CONTINUED

Question 7.

At a collider, a 20 GeV electron beam collides with a 300 GeV proton beam. If the centre-of-mass energy $E_{CM} = 150$ GeV, what is the crossing angle between the beams? [5 marks] Calculate what beam energy would be required in a fixed-target experiment to achieve a total centre-of-mass energy of 100 GeV.

[4 marks]

Explain which interaction is responsible for the following reactions:

1) $D^- \rightarrow K^0 + \pi^-$	$(D^- = d\overline{c})$
2) $\Lambda \rightarrow p + e^- + \overline{\nu}_e$	$(\Lambda = uds)$

[3 marks]

Draw the lowest-order Feynman diagram at the quark level for these reactions. [5 marks]

What are three factors which determine the magnitude of the invariant amplitude? Write down an expression which gives the general structure of the lowest-order amplitude f for a process involving elementary particles.

[4 marks]

Explain briefly why electromagnetic and weak interactions have approximately the same strength at high energies.

[3 marks]

Consider the following combinations of quantum numbers (Q, B, S, C, \tilde{B}) , where Q = electric charge, B = baryon number, S = strangeness, C = charm and $\tilde{B} =$ beauty:

(a)	(-1, 1, -2, 0, -1)
(b)	(0, 0, 1, 0, 1)

Which of these possible states are compatible with the postulates of the quark model? [6 marks]

PLEASE TURN OVER

Question 8.

Which of the following reactions are allowed and which are forbidden? Explain why and draw their lowest order Feynman diagrams where possible.

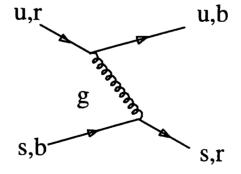
$V_{\mu} + p \rightarrow e^+ + n$		[3 marks]
$\Sigma^- \rightarrow K^- + \pi^0$	$(\Sigma^- = dds)$	[3 marks]
$e^+ + e^- \rightarrow \gamma + \gamma$		[3 marks]
$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$		[3 marks]

Explain why it was necessary to introduce the colour quantum number in the simple quark model.

[2 marks]

A

2


What experimental evidence do we have to support the claim that there are 3 colour charges?

[4 marks]

A 40 GeV e^+e^- collider has a diameter of 8 km. Each beam consists of 12 bunches each containing 3×10^{11} particles. The bunches have a cross-sectional area of 0.02 mm². What is the luminosity of the machine in units of cm⁻²s⁻¹?

[7 marks]

The lowest-order Feynman diagram for the scattering of a red u-quark with a blue s-quark by gluon exchange is given below.

What does the existence of this diagram imply about the gluon-gluon interaction and how does this differ from the interaction of photons?

[5 marks]

Question 9.

Explain what is meant by isotopes and isobars.

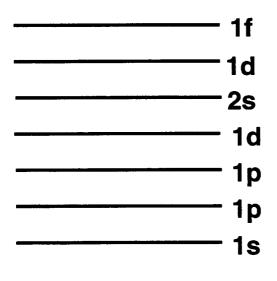
[1 mark]

Using the semi-empirical mass formula (SEMF)

$$M(Z,A) = Zm_p + (A-Z)m_n - a_vA + a_sA^{2/3} + a_cZ^2A^{-1/3} + a_a(Z-A/2)^2A^{-1} \pm \delta a_pf(A)$$

obtain an expression of Z as a function of A for the stable isobars.

[7 marks]


What is the binding energy of a nucleus and what is the physical meaning of the binding energy per nucleon B/A?

[2 marks] Draw a rough sketch showing *B/A* as function of A for stable nuclei.

Write down the shell model configuration of the nucleus ${}^{40}_{18}Ar$ using the level diagram given below

[4 marks]

[3 marks]

Using the single-particle shell model predict the spin and parity (J^p) of $\frac{40}{18}Ar$	•
	[4 marks]
Explain the difference between fissile and non fissile materials.	[2 marks]
Explain why a chain reaction is not possible in natural uranium.	[3 marks]
List two methods which can help overcome this difficulty when designing a uranium-based reactor.	thermal
	[2 marks]
Explain briefly the main idea of a fast breeder reactor.	
	[2 marks]

¥.

•'

_

Question 10.

Find the range of the force transmitted by the exchange of:

(a) a pion of mass 140MeV/c^2 ;

(b) a Z-boson of mass 91 GeV/ c^2 ;

(c) a gluon.

A $p\bar{p}$ collider with equal beam energies is used to produce a pair of top quarks. Draw a Feynman diagram for this process that involves a single gluon.

[3 marks]

If the three quarks of the proton (or antiproton) carry between them 50% of the hadron total energy-momentum, calculate the minimum beam momentum required to produce the $t\bar{t}$ pair. (assume *t*-quark mass $m_t = 175 \text{ GeV/c}^2$) [8 marks]

Explain why the copper isotope 63 Cu is stable against α -decay.

The two most promising reactions for a potential future fusion reactor are the fusion of two deuterium atoms and deuterium-tritium fusion. Write down these reactions in symbol form. Which one is more efficient and why?

[4 marks]

Why are the even-even nuclei usually stable against β -decay?

[4 marks]

[6 marks]

[5 marks]