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All questions may be attempted. Credit will be given for all work done
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per sub-section of the question.

1. State the divergence theorem. [2 marks]

z
The tetrahedron shown in the picture has

vertices placed at a = (1,0,0), b = (0,1,0),
¢ ¢ =(0,0,1).

Show that the area of the triangle abc is

0 b y equal to %\/5 [2 marks]
a . Find the normal n to the plane abc and show
that the equation of the plane is
n-r=z+y+z=1. [2 marks]

Evaluate the volume of the tetrahedron

1 1-z 1-z2—y
V= / dV = / dZ/ dy/ dz . [2 marks]
|4 4] 0 0

Verify the divergence theorem for the tetrahedron for the vector field F = r.  [5 marks]

Integrate the flux of the vector field
F =y’ + 2%,

over the three faces oab, obc, and oca. [3 marks]

Also by integrating V- F over the volume of the tetrahedron, use the divergence
theorem to deduce the flux of F through the slanted surface abc. [4 marks]
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2. (a) By writing both sides of the equation explicitly in Cartesian coordinates,
prove the identity

V(A-B)=(A'Y)B+(B-Y)A+Ax (Y xB)+Bx (Y x4),

where A and B are vector functions of z, Y, and z. [8 marks]
(b) The function u(z,t) satisfies the differential equation
0%u ) , [ 0%u
o) ¢ 922 )’
where ¢ and « are real positive constants.

By seeking a solution of the equation in the separable form
u(z,t) = X(z) x T(t), find the most general solution for which

u(0,t) = 0, u(L,t) = 0, and u(z,t) — 0 as t — oo. [10 marks)
What is the minimum value of o for which a solution exists? [2 marks]
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3. (a) The matrices A, B, and D are related by D = A B. Given that

2 4 3 10 -7 -3
A= 1 -2 -2 and D=]| -3 8 =2 |,
-3 3 2 3 —-14 7

evaluate A7L. [7 marks]
Hence derive the value of B. [8 marks]

(b) For the matrices

010 1 01
B=1101 and C=}10 2 0
010 1 01
calculate B? and B® and show that, for non-negative integers n,
B2n+1 — 2n B,
2n+2 n
B = 2 Q ) (6 marks}
By expanding the exponential in a power series in «, show that :
exp(aB) =1~ %Q + %cosh (a\/é) C+ % sinh (a\/i) B, [4 marks]
where coshz = 322 22" /(2n)!
4. The matrix A is given by
-3 20 2
2 3 1
Verify that one of the eigenvalues is A\; = —2 and that the corresponding
0
1
normalised eigenvectorisv, = —= | 7 |- 5 mark
g 21 \/i ( ) ) [ s}
By showing that the characteristic equation is A3 + A% — 22\ — 40 = 0, or oth-
erwise, find the other two eigenvalues A; and A3 and the associated normalised
eigenvectors v, and vs. {9 marks]
Show explicitly that these eigenvectors are mutually orthogonal, yfgj = 0 for
7 # _] . [3 marks]
Why should this be so? ' [1 mark]
Show further that
1).1 X QZ = CQ; b)
where the constant C has magnitude one. [2 marks]
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5. Show that the second-order differential equation
d’y dy
—_— 2 — — =
(2z 2x)d$2+(1 m)d$+3y 0
has two solutions of the form
yzzan$n+k, aO#O
=0

with k=0or k= % [8 marks]

Derive the recurrence relation

any1 (n+k)2n+2k—-1)-3

an  (n+k+1)(2n+2k+1) [4 marks]
Show that the k = % series terminates and find the explicit form for the solu-
tion for y as a function of z. [3 marks]
Use the d’Alembert ratio test to determine the range of values of  for which
the k = 0 series converges. [3 marks]
Explain why, from the structure of the differential equation, one would expect
the solution to either vanish at £ = 1 or to have a badly behaved solution at
=1 [4 marks])

PHYS2B72/2004 CONTINUED



e

6. If f(z) has a Fourier series expansion of the form

f(z) = %ao + Z a, cosnT + Z b, sinnz ,

n=1 n=1

show, by quoting the orthonormality of the sine and cosine functions, that the
Fourier coeflicients are given by

an = l/1r f(z) cosnzdz
m™J—7

]_ g
b, -/ f(z) sinnzdz. [6 marks)
mJ—-n

The function f(z) is periodic with period 27. In the interval —m < z < 4, it
is given by

sinz if >0,

flz) = { —sinz if £<0.

Is f(x) even or odd? [1 mark] -

Show that the Fourier series of this function is

f(x):g-—i i = CosS N .

T T ek, n?—1 [8 marks]
n>2

Hence write down the Fourier series for the periodic function given by
g(zr) =cosz for 0 <z < 7 and g(z) = —cosz for -7 < z < 0. {3 marks]

Use the Fourier series for f(z) at z = 0 to evaluate the sum

> 1

S= .
nezven n2 - ]-
n>2

Verify the order of magnitude of your answer by evaluating the sum of the first
five terms on a calculator. ' [2 marks]

You may find the following identity useful:

sin Acos B = £ [sin(A + B) + sin(4 — B)] .
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7. The generating function for the Legendre polynomials is

g(z,t)=(1 -2zt + )72 =" P (z)t",

n=0

where |t| < 1.

(a) Show that P,(1)=1.
(b) Show that P,(z) = (=1)*P.(-=z).

(c) By expanding g(z,t) in powers of ¢, show that
Po(z) =1, Pi(z) = z, and Py(z) = 1(32% - 1).

(d) By differentiating g(z,t) with respect to ¢, show that the Legendre poly-
nomials satisfy the recurrence relation

(n+1) Poyi(z) — (2n+ 1)z Pu(z) + 1 Paoq(2) = 0.

(e) Use the recurrence relation to find the expression for P3(z).
(f) Find the values of z satisfying P;(z) = 0 and those satisfying Ps(z) =0.

(g) Why does orthogonality of the Legendre polynomials require that the
solutions for z in part (f) lie in the range —1 < z < +17

(k) For z >> 1 the leading term in the Legendre polynomial is

P,(z) = a,z".

Use the recurrence relation to show that

_(2n—1)1

n!

where (2n — 1)1 = (2n —1)(2n — 3)--- . -- 1forn > 1.
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