UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ij

٩,

Phys & Astro 2201: Electricity and Magnetism

COURSE CODE	: PHAS2201
UNIT VALUE	: 0.50
DATE	: 16-MAY-06
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

TURN OVER

Answer \underline{ALL} SIX questions from Section A and THREE questions from Section B.

é

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

> permittivity of free space, $\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$ electron's charge, $e = 1.602 \times 10^{-19} \text{ C}$

SECTION A

[Part marks]

1.	(a)	Write down the expression for the electric field generated by a point-like charge q . Define the constants appearing in the expression.	[2]
	(b)	Sketch the electric field lines for a point positive charge.	[1]
	(c)	By using the principle of superposition, write down the electric field due to a collection of point charges q_1, q_2, \dots, q_n . Sketch the electric field lines for two equal point positive charges	[2]
_	(u)	Sketch the electric field lines for two equal point positive charges.	[4]
2.	(a)	Define the flux of the electric field.	[1]
	(b)	State Gauss' law for electrostatics in integral form.	[2]
	(c)	By using this law determine the electric field \underline{E} outside of an insulating sphere of radius R uniformly charged with total charge Q .	[4]
3.	(a)	Define a conductor.	[2]
	(b)	Describe the electric field inside a conductor at electrostatic equilibrium, and explain the answer.	[2]
	(c)	If an isolated conductor carries a charge, where is the charge distributed? Justify your answer.	[2]
4.	(a)	Write down the Lorenz force, defining the quantities involved.	[2]
	(b)	Write down Ampère's law, defining the quantities involved.	[2]
	(c)	By using Ampère's law, derive the magnetic field due to a current in an infinitely long wire.	[3]
5.	(a)	Write down the definition of the flux of the magnetic field, defining the quan- tities involved.	[2]
	(b)	Write down Faraday's law.	[2]
	(c)	Consider a loop of wire, in which a current is induced following a change in the magnetic flux through the loop. Relate the direction of the induced current to the change in the magnetic field flux (Lenz's law).	[3]
	PHA	S2201/2006 PLEASE TURN OVER	

6.	(a)	Define the current I through a surface A .	[2]
	(b)	Write down Ohm's law, which relates the current I flowing through a resistor of resistance R to the potential difference V across the resistor.	[2]
	(c)	Write down an expression relating the power dissipated in a resistor of resistance R to the potential difference V across the resistor.	[2]

SECTION B

- 7. (a) Consider an infinite plane sheet, uniformly charged with charge density σ . By using Gauss's law, determine the magnitude of the electric field at a distance z from the plane.
 - (b) Consider a circular disk of radius R, uniformly charged with charge density σ .
 - i. Show that the electric field at point P, a distance z > 0 from the disk along its central axis, is

$$E(z)=rac{Qz}{2\pi\epsilon_0R^2}\left[rac{1}{z}-rac{1}{\sqrt{R^2+z^2}}
ight]$$

where Q is the total charge on the disk.

ii. What do you expect for $R \to +\infty$?

- (c) Consider now a flat ring, with internal diameter R and external diameter 2R, uniformly charged with charge density σ .
 - i. Determine the electric field at a point P, a distance z > 0 from the ring along its central axis. [4]
 - ii. Determine the leading order of the potential V at a point P, located at a large distance z >> R from the ring along its central axis. [4]

.

CONTINUED

1

à

[5]

[5]

[2]

- 8. (a) Write down the equivalent resistance for:
 - i. Two resistors R_1, R_2 in series;
 - ii. Two resistors R_1, R_2 in parallel.
 - (b) Consider the following circuit consisting of 5 equal resistors with resistance R.

	i. Determine the equivalent resistance between points F and H.	[3]
	ii. Determine the equivalent resistance between points F and G.	[3]
(c)	Define the capacitance for a pair of conductors in terms of the charge stored and the potential between them.	[2]
(d)	Determine the capacitance of a parallel plate capacitor in terms of the area and separation of the plates, stating all assumptions made.	[2]
(e)	A capacitor with an initial potential difference of 100 V is discharged through a resistor when a switch between them is closed at $t = 0$. At $t = 10$ s the potential difference across the capacitor is 1 V.	
	i. What is the time constant of the circuit? ii. What is the potential difference across the connector at $t = 17$ c?	[3]
	n. What is the potential uncrease across the capacitor at $t = 17.8$:	ျဖ

PHAS2201/2006

PLEASE TURN OVER

[2]

[2]

- 9. (a) Define the force \underline{F}_B acting on a charge q moving with velocity \underline{v} in the presence of a magnetic field \underline{B} .
 - (b) An electron that has velocity

$$\underline{v} = (2.0 \times 10^6)\hat{i} + (3.0 \times 10^6)\hat{j}$$
 m/s

moves through the uniform magnetic field

$$B = 0.030\hat{i} - 0.15\hat{j}$$
 T.

Find the force on the electron.

- (c) A closed wire loop with current I is in a uniform magnetic field \underline{B} .
 - i. Show that the total magnetic force on the loop is zero.
 - ii. Does your proof also hold for a nonuniform magnetic field? Justify your answer.
- (d) i. Consider a single current loop, of radius R and current I. The magnetic field B at an axial point P a distance z from the centre of the loop is

$$B = rac{\mu_0 I R^2}{2(z^2 + R^2)^{3/2}} \; .$$

Write down an expression for the magnetic field at a large distance from the loop in terms of the loop magnetic moment.

- ii. Two concentric, circular wire loops of radius R_1 , R_2 are located in the xy plane. They carry a current I_1 and I_2 , respectively. Write down an expression for the magnetic field at a point P on the common axis of the two loops, at a large distance from the system of two coils.
- 10. Consider a circuit consisting of a capacitor, with capacitance C, connected to an inductor, with inductance L. Assume that the inductor has negligible resistance.
 - (a) Write down an expression for the energy U_E stored in the electric field of the capacitor as a function of C and of the charge Q on the capacitor.
 - (b) Write down an expression for the energy U_B stored in the magnetic field of the inductor as a function of L and of the current I through the inductor.
 - (c) Describe the time-dependence of $U_E + U_B$. Justify your answer.
 - (d) Consider now an RLC circuit consisting of a resistor R, an inductor L and a capacitor C connected in series. Derive a differential equation for the charge q on the capacitor.

PHAS2201/2006

CONTINUED

[3]

[5]

[4]

[3]

[2]

[5]

[5]

[5]

[3]

- 11. (a) Define an electric dipole and write down an expression for its electric potential at a large distance.
 - (b) Define the potential energy U of a system of point charges $q_1, q_2, ..., q_n$.
 - (c) Given that the potential due to a uniformly charged insulating sphere of radius R and charge Q is

$$V(r) = rac{1}{4\pi\epsilon_0}rac{Q}{r}$$
 $(r > R)$

show that its total electrostatic energy is

$$U = \frac{3}{5} \frac{Q^2}{4\pi\epsilon_0 R}.$$
 [6]

(d) Determine the electrostatic energy for a conducting sphere of radius R and total charge Q.

PHAS2201/2006

END OF PAPER

[4] [4]

[6]

• .

٩