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Calculators are NOT permitted in this examination.

Physical Constants

Gravitational Constant G 6.7 × 10−11 N m2 kg−2

Speed of Light c 3 × 108 m s−1

Mass of Electron me 9.1 × 10−31 kg
Mass of Proton mp 1.7 × 10−27 kg
Boltzmann’s Constant kB 1.4 × 10−23 J K−1

Black-body Constant a 7.6 × 10−16 J K−4m−3

Stefan-Boltzman Constant σ 5.7 × 10−8 W K−4m−2

1 Mpc = 3 × 1022 m.
1 Mev = 1.6 × 10−13 J.

The following results may be quoted without proof:

The Robertson–Walker metric is

ds2 = −c2dt2 +R2(t)[dχ2 +
(

sinAχ
A

)2

(dθ2 + sin2 θdφ2)],

where R(t) is the scale factor, A =
√
k, and k takes values 0,1,-1.
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The dynamical equation governing the evolution of the scale factor (including the cosmo-
logical constant terms) is:

R̈ = −4πG
3

(
ρ+

3p
c2

)
R+

ΛR
3
.

The Friedmann equation is:

Ṙ2 + kc2 =
8πG

3
ρR2 +

ΛR2

3
.

The law of energy conservation is

d(ρc2R3) = −3pR2dR.

The critical density is

ρcr = 3H2
0/(8πG) = 1.8 × 10−26h2kgm−3,

and
h = H0/(100 · km s−1 Mpc−1).

SECTION A: Each question carries 14 marks. You should attempt ALL ques-
tions.

A1

Show that in an infinite static Universe with a uniform density of sources the night sky
should be as bright as the Sun (the Olber’s paradox).
Imagine a static sphere of radius R, filled with stars of radius rs ≈ 7·105km, and separated
from each other by a distance D = 1 pc. Assume that we live in a Universe which is such a
sphere with nothing around it, and the brightness of all stars in such a Universe is exactly
equal to the brightness of the Sun. Find the radius R of such a Universe, assuming that
the brightness of the sky at night is 106 times less than the brightness of the Sun.
Explain qualitatively why the evolution and expansion of the Universe can resolve this
paradox.
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A2

Write down the Hubble law in vector form.
Consider three galaxies in an expanding Universe located at points a, b and c. Prove that
if the Hubble law is valid for an observer at a, then it is also valid for observers at b and
at c.
Assume that the vector �rab is perpendicular to the vector �rac. For an observer in galaxy a
galaxy b is redshifted with zb(a) = 0.6 and galaxy c is redshifted with zc(a) = 0.8. Find the
redshift zc(b) of galaxy c, measured by an observer in galaxy b.
A3

Describe briefly the method of determination of distances using supernovae (the Baade-
Wesselink method). Estimate to order of magnitude the distance, D, to the galaxy in
which a supernova exploded, if at the end of the first day after the explosion of the
supernova the expansion speed of the shell v = 103 km s−1, its temperature T = 104 K,
and apparent luminosity l = 5.7 × 10−16 W m−2. Give the answer in Mpc.
A4

Assume that the Universe is closed (k = 1) and contains only dust (α = 1 and Λ = 0).
Using the Friedman equation and the energy conservation equation, demonstrate that the
solution of the Friedman equation can be presented in the following parametric form

R(η) =
β

2
(1 − cos η), t(η) =

β

2c
(η − sin η),

where η is a variable which runs from 0 to 2π and β is some constant.
Express β in terms of the Hubble constant H0 and the dimensionless density Ω0, both
taken at the present moment of time t0.
A5

The present Universe contains blackbody radiation with temperature T = 2.7K. Estimate
the number of photons per baryon, if the matter density parameter is Ω0 = 1 and the
Hubble constant H0 = 50 km s−1 Mpc−1. Show that this number does not depend on
time.
Estimate the density of the matter at the moment when the density of the black body
radiation was as high as the density of iron (7.8 g cm−2).
Explain qualitatively why the temperature of the neutrino background is lower than the
temperature of the microwave background.
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SECTION B: Each question carries 30 marks. You may at-
tempt all questions but only marks for the best ONE question
will be counted.
B1

Using the energy conservation equation, show that if R = R0(t/t0)β and p = αρc2 the
dynamical equation for the scale factor R(t) can be written in the following form

β(1 − β)
t2

=
4πGρ0

3
(1 + 3α)

(
R

R0

)−3(1+α)

− Λ
3
.

Assuming α �= −1 find Λ and β from this equation in terms of α.
Then show that the density ρ always varies in inverse proportional to time unless β �= 0
and is equal to

ρ(t) =
1

6πG(1 + α)2t2
.

Consider separately the case β = 0 (the static Universe) and for this case find Λ in terms
of ρ and α.
Starting from the energy conservation equation consider separately the case α = −1 and
find R, ρ and Λ.
For what value α∗ does R grow at the same rate as the particle horizon, ct? Does it mean
that the universe is empty?
Consider the case α = α∗ separately and find ρ and Λ in this case.
B2

Using the equations governing the evolution of the scale factor, show that the deceleration
parameter q = −RR̈/Ṙ2 is given by

q =
1
2
Ω(1 + 3α) − Λ

3H2
,

where H = Ṙ/R, Ω = ρ/ρcr, and ρcr = 3H2/(8πG).
Find q, if the Universe contains i) only dust, ii) only radiation.
Identify a condition that must be satisfied by the equation of state, if Λ = 0 and q is
negative.
Discuss briefly what conclusions we could make if observations showed q < 0.
Show that the Friedman equation can be written in the following form

H2 =
8πG

3
ρ+ Λ/3 − kc2/R2.

Compare three terms in the Friedman equation: the matter term corresponding to arbi-
trary α, the Λ-term and the curvature term. Write down the way in which each of these
terms behaves as a function of the scale factor R. By considering suitable ranges of values
of α, determine conditions for the domination of each term at early times and at late
times.
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The current observations of the black body radiation reveal that the Universe expands with
acceleration and this acceleration is substantially determined by the Λ-term. Evaluate the
effective dimensionless density ΩΛ corresponding to this Λ-term ( the so called ”dark
energy”), if as follows from the observations, Ω0 = Ωm + ΩΛ = 1 and q = −0.05. Here Ωm

corresponds to the matter with α = 0.

B3

Consider a sphere with χ = χs. Using the Robertson-Walker metric, find
i) the physical radius of the sphere, r(χs),
ii) the circumference of a circle in the equatorial plane (θ = π/2), C(χs).
Assume that a spherical galaxy of radius D has redshift z and apparent angular diameter
∆θ. Assume also that α = 0 (dust) and Λ = 0. Using the equation for radially propagating
photons ds = 0, determine the relationship between z and χ. Then find ∆θ as a function
of z in the following two cases: i) a spatially flat Universe, ii) an empty Universe.
Explain qualitatively the physical reasons why the dependence of ∆θ on z is non-monotonic
and find the value of zm at which the angular diameter attains its minimum in the cases
i) and ii).
Imagine that you observe some galaxy on the sky with known physical diameter D and
known redshift z. You can measure its angular diameter ∆θ with very high accuracy.
What fractional accuracy should you achieve in measurement of the apparent angular
diameter of the galaxy in order to determine from your observations whether the Universe
is empty or spatially flat? Give a numerical answer to a whole number of percent, if
z = 0.04.
B4

Derive the equation for the evolution of small density perturbations, δ = (ρ
′ − ρ)/ρ after

decoupling, to show that
δ̈ + (4/3t)δ̇ − (2/3t2)δ = 0.

(Hint: Take into account that ρ′R
′3 = ρR3.) Solve this equation using the trial solution

δ ∝ tm to obtain the two modes of perturbations: δ = A(t/t0)m1 +B(t/t0)m2 .

According to the COBE observations of the Microwave Background anisotropy, the am-
plitude of the density perturbations at the moment of decoupling is about 10−5 (Take the
redshift at this moment to be z = 999). Assuming that the first objects were formed at
a redshift z = 9, estimate the two arbitrary constants in your solution for the density
perturbations.

END OF EXAMINATION
A.G. Polnarev
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