
B.Sc. Examination

MAS 206 Dynamical Astronomy

Thursday 25 May 2000, 10 am

Duration: 2 hours

This paper has two Sections and you should attempt both Sections. Please read care-
fully the instructions given at the beginning of each Section.

Calculators may be used in this examination, but any programming, graph plotting or
algebraic facility may not be used. Please state on your answer book the name and
type of machine used.

SECTION A: Each question carries 12 marks. You should attempt ALL questions.

A1. A satellite moves in an elliptical orbit about a spherical planet of radius R. When
the satellite is 90◦ from its pericentre, the shortest distance from the centre of the
satellite to the surface of the planet is D1. When the satellite is at its apocentre,
the shortest distance to the surface of the planet is D2. Use the polar equation of a
keplerian ellipse to derive expressions for the eccentricity and semimajor axis of the
satellite’s orbit in terms of D1, D2 and R.

A2. Tidal stripping of the stars in a galaxy can occur if it passes sufficiently close to
another galaxy. Consider the passage of a small galaxy (mass m and radius R) close
to a large galaxy (mass M). Let the radial separation of their centres be r where
r � R, and consider the large galaxy to act as a point mass.

(a) Calculate the magnitude of the gravitational force per unit mass due to the large
galaxy at the points on the small galaxy (i) closest to and (ii) furthest from the
large galaxy. Hence show that the magnitude of the difference between either of
these two quantities and the value at the centre of the small galaxy is given by

∆F

m
≈ 2

GMR

r3

where G is the universal gravitational constant and terms of second order or higher
in R/r have been neglected.

(b) By comparing this difference with the gravitational force per unit mass directed
towards the centre of the small galaxy at these points, find the critical value of
the separation below which the stars in the small galaxy will be tidally stripped.
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A3. Two masses move in circular orbits about their common centre of mass. In the frame
rotating at the angular velocity, n, of both masses, the planar equations of motion of
a test particle are given by

ẍ − 2nẏ =
∂U

∂x

ÿ + 2nẋ =
∂U

∂y

where x and y are the components of the position vector, and U = U(x, y) is a function
of x and y.

(a) Show that the quantity
C = 2U − ẋ2 − ẏ2

is a constant of the motion.

(b) Use the fact that U is a function of r1 and r2 to find expressions for ∂U/∂x and
∂U/∂y in terms of ∂U/∂r1 and ∂U/∂r2 and hence show that a trivial solution of
∂U/∂x = 0 and ∂U/∂y = 0 is ∂U/∂r1 = ∂U/∂r2 = 0.

A4. The orbit of a planet about a star has semimajor axis a and an orbital period T .
Interior to the orbit of the planet are the locations of an infinite sequence of p + 1 : p
resonances where the orbital period, Tp, of a test particle is related to T by the
equation T/Tp = (p + 1)/p, where p = 1, 2, 3, . . . is an integer. Derive an expression
for the separation in semimajor axis between the p+1 : p and p+2 : p+1 resonances
as a function of a and p. Show that in the case where p is large this separation is
approximately (2a/3)(1/p2).

A5. A system of N gravitationally interacting masses has a total potential energy −U and
a total kinetic energy T . The total energy of the system is E.

(a) If the moment of inertia of the system about a fixed point is constant, state the
virial theorem and use it to express (i) E as a function of U and (ii) T as a
function of U .

Consider a spherical cluster composed of N stars, each of mass m. Each star has a
typical random velocity V and any pair of stars have an average separation R. There
are N(N − 1)/2 possible pairings of stars in the cluster.

(b) Write down the total kinetic energy and the total potential energy of the star clus-
ter and, assuming that the moment of inertia is constant, use the virial theorem
to find an expression for V .
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SECTION B: Each question carries 20 marks. You may attempt all questions but
only marks for the best TWO questions will be counted.

B1. A satellite of mass m moves in a circular orbit of radius a about a planet. A test
particle is located at a radial distance r from the centre of the planet and the line
from the particle to the planet makes an angle θ with the planet–satellite line. The
potential energy per unit mass experienced by the particle due to the satellite is given
by V = −Gm/∆ where ∆ is the distance from the particle to the centre of the satellite.

(a) Show that

∆ = a

[
1 − 2

( r

a

)
cos θ +

( r

a

)2
]1/2

.

(b) If a body is in hydrostatic equilibrium, what can be said about the gravitational
potential on its surface?

(c) Show that in the case where r � a,

V ≈ −Gm

a

[
1 +

( r

a

)
cos θ +

( r

a

)2 1
2
(3 cos2 θ − 1)

]

where terms of third order and higher in r/a have been neglected. Explain why
the term in (r/a)2 gives rise to two tides per day on the planet due to the satellite.

B2. In the two-body problem Kepler’s equation, M = E − e sinE, relates the mean
anomaly, M , to the eccentric anomaly, E, and the eccentricity, e.

(a) Use a diagram of a keplerian ellipse and a circumscribed circle to show clearly
the geometric relationship between E and the true anomaly, f .

(b) A series solution to Kepler’s equation can be obtained from the iteration scheme,
Ei+1 = M + e sinEi, (i = 0, 1, . . .), where E0 = M is an initial approximation.
Use this scheme with two iterations to show that

E = M + e sinM +
1
2
e2 sin 2M + O(e3).

(c) The true anomaly is related to M and E by the equation

f =
√

1 − e2

∫ (
dE

dM

)2

dM.

Use the series solution for E given in part (b) to show that

f − M ≈ 2e sinM +
5
4
e2 sin 2M + O(e3).
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B3. The torque experienced by a satellite of mass m, moving in a circular orbit of radius
a, due to the tidal bulge it raises on a homogeneous planet of radius R is

Γ = Gm2

a

(
R

a

)5 3
2
k2 sin 2θ.

where k2 (a constant) is the Love number of the planet, G is the universal gravitational
constant, and θ is the lag angle.

(a) If E is the sum of the rotational energy of the planet and the orbital energy of the
satellite–planet system, show that Ė, the rate of change of this energy, is given
by

Ė = IΩΩ̇ +
1
2
mn2aȧ

where I is the moment of inertia of the planet, Ω is the rotational frequency of
the planet and n is the mean motion of the satellite. Hence show that if the total
angular momentum (i.e. rotational plus orbital) of the system is conserved then

Ė = −1
2
manȧ(Ω − n).

(b) Given that Ė = −Γ(Ω − n) < 0, use the results from part (a) to show that the
semimajor axis of the satellite will change at a rate given by ȧ ∝ a−11/2, and give
the explicit form of the constant of proportionality.

B4. A planet moves in a circular orbit about a central star. In a rotating frame moving
with the uniform angular velocity of the planet, the path of the particle moving on an
elliptical coplanar orbit interior to that of the planet will have ‘loops’ for sufficiently
large values of the particle’s eccentricity, e.

(a) Give a brief, qualitative explanation for these loops, stating whereabouts they
occur in the orbit of the particle.

(b) Draw a sketch showing how the appearance of the path of the particle in the
rotating frame changes as a function of e for the particular case of the 3:2 reso-
nance.

(c) In the general case of the p + q : p resonance, where p and q are positive integers,
show that the loops just start to form when e satisfies the equation

(1 + e)3 = [(p + q)/p]2(1 − e).

(You may use the fact that the angular momentum per unit mas of the particle
is na2

√
1 − e2 where n, a, and e are the particle’s mean motion, semimajor axis

and eccentricity.)

End of examination paper.
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