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This paper has two Sections and you should attempt both Sections. Please read care-
fully the instructions given at the beginning of each Section.

Calculators are NOT permitted in this examination.

SECTION A: Each question carries 12 marks. You should attempt ALL questions.

A1. A planet orbits a star on an elliptical path with eccentricity, e. At any given time its
angular position can be defined either in terms of its true anomaly, f , or its eccentric
anomaly, E.

(a) Sketch a diagram of a Keplerian ellipse and the circumscribed circle and use it
to show clearly the angles f and E.

(b) The equation of an ellipse with centre at the origin and of eccentricity, e, in
rectangular coordinates is (x̄/a)2 + (ȳ/b)2 = 1, where a and b = a

√
1 − e2 are

the semi-major and semi-minor axes of the ellipse respectively. By deriving ex-
pressions for x̄ and ȳ from your diagram, show that the x and y components of
the position vector of the planet, referred to the standard Keplerian coordinate
system with origin at the centre of the star, are given by

x = a(cosE − e), y = a
√

1 − e2 sinE.

(c) Show that the radial distance of the planet from the centre of the star is given by

r = a(1 − e cosE).

A2. A satellite of mass m moves in a circular orbit of radius a about a planet. A test
particle is located at a radial distance r from the centre of the planet and the line
from the particle to the planet makes an angle θ with the planet–satellite line. The
square of the distance between the particle and the centre of the satellite is given by

∆2 = a2 − 2ar cos θ + r2.

Show that in the case where r � a (i.e. the particle is close to the planet) the potential
energy per unit mass experienced by the particle due to the satellite is given by

V = −Gm

a

[
1 +

( r

a

)
cos θ +

( r

a

)2 1
2
(3 cos2 θ − 1)

]
+ O(r/a)3

where G is the universal gravitational constant. Explain briefly why the term involving
(r/a)2 in the above expression for V gives rise to a tidal bulge on the planet.
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A3. In the two-body problem, Kepler’s equation

M = E − e sinE,

relates the mean anomaly, M , to the eccentric anomaly, E, and the eccentricity, e.

(a) Devise an iterative scheme for the numerical solution of Kepler’s equation which,
for given values of M and e, relates Ei+1 (the (i + 1)th iterate of E) to Ei.

(b) An analytical approximate solution of Kepler’s equation can be obtained for small
e by means of a series solution in M . Taking E0 = M as a first approximation,
find an expression for the series solution that includes terms up to the second
order in e.

A4. The equations of motion in the rotating frame of the test particle in the planar, circular
restricted three-body problem are given by

ẍ − 2ẏ =
∂U

∂x
ÿ + 2ẋ =

∂U

∂y

where x and y are the components of the position vector, U is given by

U =
1
2
(x2 + y2) +

µ1

r1
+

µ2

r2

where r1
2 = (x + µ2)2 + y2, r2

2 = (x − µ1)2 + y2, µ1 = m1/(m1 + m2), µ2 =
m2/(m1 +m2), and the mean motion of of the main 2–body component is taken to be
unity. Show that the quantity C = 2U − ẋ2 − ẏ2 is a constant of the motion. Define
what is meant by an equilibrium point of the system. Derive explicit expressions for
∂U/∂x and ∂U/∂y, and hence show that there are equilibrium points at x = 1

2 − µ2

and y = ±
√

3/2.

A5. Radio observations of atomic hydrogen in the Galaxy allow measurements of the veloc-
ity of the gas along the line of sight from our observation point, S, which is at a radial
distance rs from the centre, O, of the Galaxy. The Galaxy can be considered as a
coplanar system with material moving in circular orbits about its centre. Consider the
motion of a cloud at a point C at a radial distance r from the centre of the Galaxy.
Let l = OŜC be the angle between the centre–Sun and Sun–cloud directions, and
θ = SÔC be the angle between the centre–Sun and centre–cloud directions. Viewed
from the rotating frame of S, the contribution to the line of sight velocity, V‖, from
the cloud is V‖ = r[Ω(r) − Ω(rs)] sin(θ + l) where Ω(r) is the angular velocity at a
radial distance r.

(a) Sketch the geometry of the system and show that V‖ = rs[Ω(r) − Ω(rs)] sin l.

(b) Show that the circular velocity of the cloud at a distance r is given by

V (r) = Vmax + rsΩ(rs) sin l

where Vmax is the maximum value of V‖ for the cloud.

continued overleaf . . .
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SECTION B: Each question carries 20 marks. You may attempt all questions but
only marks for the best TWO questions will be counted.

B1. A binary system consists of two stars of masses m1 and m2 and position vectors r1 and
r2 (with respect to a fixed origin) moving under their mutual gravitational attraction.

(a) Taking r = r2 − r1 to be the position vector of the mass m2 with respect to m1,
write down an expression for the force experienced by each mass. Hence show
that r satisfies the vector equation of motion

r̈ + G(m1 + m2)r/r3 = 0

where G is the universal gravitational constant. Prove that h = r× ṙ is a constant
of the motion and use the expressions for r and ṙ in polar coordinates to show
that h = |h| = r2θ̇.

(b) Use the expression for r̈ in polar coordinates to show that the equation of motion
can be written in scalar form as

r̈ − rθ̇2 = −G(m1 + m2)/r2, where r = |r|.

(c) By making the substitution u = 1/r show that the scalar equation of motion can
be written as

d2u

dθ2
+ u =

G(m1 + m2)
h2

.

Solve this equation to find u(θ) and hence r(θ), relating any constants of integra-
tion to the semi-major axis, eccentricity and longitude of pericentre of the orbit
of m2 with respect to m1.

[You may assume that the velocity and the acceleration in polar coordinates are given by
ṙ = ṙr̂ + rθ̇θ̂ and r̈ = (r̈ − rθ̇2)r̂ + [ 1r

d
dt (r

2θ̇)]θ̂ respectively.]

B2. Consider a system of N gravitationally interacting particles of masses mi with position
vectors Ri, relative to a coordinate system with a fixed origin at O.

(a) Write down the total potential energy −U and the total kinetic energy T of the
system. Let the total energy of the system be E.

(b) Starting with the total moment of inertia I of the system about O and differen-
tiating I twice with respect to time, obtain the virial theorem in the form

d2I

dt2
= 4T − 2U .

Assuming d2I/dt2 = 0, express (i) E in terms of U and (ii) T in terms of U .

(c) Consider the two body problem consisting of a planet of mass m in a circular
orbit of radius r about a star of mass M . Assuming m � M , verify the relation
in (b) part (i) for E in terms of U .

[You may assume that the magnitude of the velocity of the planet in a general elliptical
orbit is given by V 2 = G(M +m)(2/r−1/a), where a is the semi–major axis of the ellipse.]
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B3. The two satellites S1 and S2 around a planet P undergo almost instantaneous changes
in the semi-major axes of their orbits every T years when they encounter one another.
The encounters are assumed to produce symmetric changes in each orbit such that if
the initial semi-major axis of a satellite is 1±∆a before the encounter, its value after
the encounter will be 1 ∓ ∆a, where ∆a � 1.

(a) Assuming (i) that the masses of the two satellites are negligible compared with
the mass of the planet, (ii) that there is conservation of the total orbital angular
momentum of the (S1–S2) satellite system and (iii) that the satellites always
move in circular orbits, show that

Ms1

Ms2

≈ ∆as2

∆as2

where Ms1 and Ms2 are the masses of the satellites S1 and S2 and ∆as1 and ∆as2

are the differences of their semi-major axes from unity.

(b) If the mass of S2 is negligible compared to the mass of S1, draw a sketch showing
the approximate location of all the Lagrangian equilibrium points in relation to
the positions of S1 and the planet. Given that the mass of S1 is less than 10−9

that of the planet, label each of the points and state which of them are linearly
stable and which are unstable.

B4. The orbit of a satellite about a planet has a semi-major axis as and an orbital period
Ts. Interior to the orbit of the satellite are the locations of an infinite sequence of
first-order, q+1 : q resonances where the orbital period, T , of a test particle is related
to Ts by the equation Ts/T = (q + 1)/q, where q = 1, 2, 3, . . . is an integer.

(a) If the orbit of the test particle has semi-major axis a, where a < as, write down a
as a function of q and as for the q +1 : q interior resonance. Hence, by expanding
in terms of 1/q, show that when q is large the separation of adjacent q + 1 : q
resonances is approximately (2/3)(1/q)2as.

(b) Assume that each resonance has a constant width given by W = 6
√

ms/mp as,
where ms and mp are the masses of the satellite and planet respectively. Use
the expression for the separation given in part (a) to derive a condition for the
overlap of adjacent q + 1 : q resonances, when q is large. Hence show that if
ms/mp = 10−8 then overlap would occur for all resonances with q > 33.

End of examination paper.
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