


Answer 1 (i) [6 marks] Recall Gauss’ law
∫

V
∇X dV =

∫

S
X · dS, for any vector

field X. Let C be the closed contour in space with line element
dl along the contour. We also have Stokes’ theorem

∮

C
X · dl =

∫

S′
(∇ × X) · dS′. These results may be used to write Maxwell’s

equations as given. These follow by integrating the scalar Maxwell
equations over a volume V and the vector equations over a surface
S ′ with element dS′.

(ii) [8 marks] Consider first a very small shallow cylinder which strad-
dles the boundary between the two regions, for which the normals
to the circular ends of the cylinder are perpendicular to the bound-
ary. Apply the first and third of the Maxwell relations above to
the volume and surface of this cylinder. Ignoring the contribu-
tion from the infinitely thin sides of the cylinder one finds that
∮

S
D · dS = (D2 − D1) · n∆a, where ∆a is the area of the circu-

lar end of the cylinder, and n the unit normal to the boundary.
For the electric case, given a surface charge density σ we have
∫

V
ρ dV = σ∆a. Thus we deduce the boundary conditions

(D2 − D1) · n = σ, (B2 − B1) · n = 0,

the second equation following by similar arguments, noting the
absence of magnetic charges.

Now consider a small rectangle which straddles the boundary be-
tween the two media. This rectangle has short sides which are
infinitesimally small, and longer sides of length ∆l which are par-
allel to the boundary. The unit normal t to the rectangle is
tangent to the interface between the regions. Then

∮

C
H · dl =

(t × n) · (H2 − H1)∆l. Assume that there is a current density K

flowing on the rectangle surface S′. Then
∫

S′
(J+∂D

∂t
)·dS′ = K·t∆l,

since the D term vanishes as the area of the cylinder goes to zero.
Thus we deduce from the second and fourth of the Maxwell inte-
gral relations that

n × (H2 − H1) = K, n × (E2 − E1) = 0,

the second equation following again by the same arguments, noting
the absence of magnetic sources.

(iii) [6 marks]

The relevant boundary condition is

Ep + E′′

p = E′

p,

where the subscript p refers to the component parallel to the in-
terface. This immediately gives the required equation. If this is
true for all x then the exponents in the equation must be equal,
which implies the two relations given.



Answer 2 (a) [5 marks] Since Esc and Bsc are perpendicular, and similarily for
the incident electric and magnetic fields, one has |Ssc| = |Esc|

2/cµ0

and similarily for the incident flux. The time averaging factors
cancel in the ratio and the result follows.

(b) [5 marks] The scatterer at xj experiences the incident field with
a phase factor differing from that at the origin by eik0·xj . Its re-
sponse will therefore also acquire this phase factor. Likewise the
phase at the detector of the component scattered by this scat-
terer acquires a further factor e−ikn·xjcompared with what would
have been received from a scatterer at the origin. So the phase
of the contribution to ESC is modified by an overall factor eiq·xj ,
so that the electric component of the scattered field is

∑

j eiq·xj

times what was the case for a single scatterer at the origin. Since
the differential cross-section involves the square modulus of this,
the result is as given, namely to multiply the result for a single
scatterer by the structure factor.

(c) [5 marks] For N scatterers, the sum gives directly that F(0) = N2.
For a large number of randomly-distributed scatterers, the phases
of off-diagonal terms in the sum (obtained from expanding out the
modulus squared) will cancel except close to the forward direction,
provided that |q|a >> 1. Then F(q) ≃ N .

(d) [5 marks] In a crystal, there are peaks in the structure function
around qa = 0, 2π, 4π, ..., ie when the Bragg condition is satis-
fied, and then F = N2. The number of peaks is limited by the
maximum value which qa can attain, qa ≤ 2ka, so that at long
wavelengths only the forward peak occurs. This has a width de-
termined by q ≤ 2π/Na, corresponding to scattering angles less
than or of order λ/L, where L is the linear size of the crystal.

(In each direction one finds F(q) = sin2(Nqa/2)

sin2(qa/2)
; this formula is not

required for full marks.)



Answer 3 (i) [6 marks] These follow from div curl = 0 = curl grad and manip-
ulations of the equations.

(ii) [2 marks] Straightforward calculation.

(iii) [4 marks] This follows as the partial derivatives commute. The
gauge transformations on Aµ are

Aµ → Aµ − ∂µΛ

which leave Fµν invariant as the derivatives commute again.

(iv) [8 marks] Write

J(x) =

∫

δ3(x′ − x)J(x′) d3x′ = ∇2

∫

−1

4π

J(x′)

|x′ − x|

= −
1

4π
∇∇·

J(x′)

|x′ − x|
d3x′ +

1

4π
∇×∇×

∫

J(x′)

|x′ − x|
d3x′ =: Jl +Jt

with ∇×Jl = 0 and ∇·Jt = 0, so that these fields are longitudinal
and transverse respectively. Now ∇2Φ = − 1

ǫ0
ρ in the Coulomb

gauge, so that

Φ =
1

4πǫ0

∫

ρ(x′)

|x′ − x|
d3x′

whence

1

c2
∇Φ̇ =

1

4πǫ0c2
∇

∫

ρ̇(x′)

|x′ − x|
d3x′ = −

µ0

4π
∇

∫

∇′·
J(x′)

|x′ − x|
d3x′ = µ0Jl

(as ∇ · J + ρ̇ = 0). Thus

∇2A −
1

c2

∂2A

∂t2
= −µ0J +

1

c2
∇Φ̇ = −µ0Jt.



Answer 4 (i) [6 marks] The first result follows directly if the student knows the
definition of the Poynting vector Sfar = 1

µ0

Efar × Bfar. The sec-
ond requires some use of the vector identities given in the supplied
formula sheet.

(ii) [3 marks] This follows directly from the formula above.

(iii) [6 marks] Specialising to the case of motion in a circle, where

∣

∣

∣

dp

dτ

∣

∣

∣
=

∣

∣

∣
γ
dp

dt

∣

∣

∣
= γω|p|,

if the energy loss per revolution is small,

1

c

dE

dτ
<<

∣

∣

∣

dp

dτ

∣

∣

∣
,

we have

P =
2

3

q2

4πǫ0

1

c3

1

m2
γ2ω2|p|2

=
2

3

q2

4πǫ0

1

c

1

m2
γ2ω2γ2β2m2

=
2

3

q2

4πǫ0

cβ4γ4 1

ρ2

using that the radius ρ = cβ/ω for motion in a circle.

(iv) [5 marks] The energy lost in a single revolution is ∆E = P× the
time for a single revolution,

∆E = P
2π

ω
= P 2π

ρ

cβ

=
4π

3

q2

4πǫ0

1

ρ
β3γ4

=
4π

3

q2

4πǫ0

β3
( E

mc2

)4 1

ρ
.



Answer 5 (i) [6 marks] This follows from ∂µ
∂L

∂∂µAν
= ∂L

∂Aν
, or equivalently δL =

−(1/µ0)F
µν∂µδAν − jµδAµ and integration by parts.

(ii) [3 marks] The divergence of the left-hand side of the equation of
motion vanishes as the derivatives commute, and hence the current
is conserved.

(iii) [4 marks] The field strength is gauge invariant and the variation
of the current term gives Λ∂µjµ up to a total derivative.

(iv) [7 marks] The first part is immediate using the definition of the
field strength tensor. The second part follows from the properties
of the delta function. For the final part, intuitively the Green
function is the inverse of the d’Alembertian, and in momentum
space this is just −1/k2 - in equations, if the Fourier transform of
D(x − x′) is −1/k2, then

⊓⊔xD(x−x′) ∼

∫

d4k(−1/k2)⊓⊔xe
−ik·(x−x′) ∼

∫

d4ke−ik·(x−x′) ∼ δ4(x−x′),

as required.


