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You may attempt as many questions as you wish and all questions carry equal marks. Ezcept for the

award of a bare pass, only the best 3 questions answered will be counted.

You may use a calculator provided that you do not make use of any programming, graph plotting or

algebraic facilities it may have.

Notation

The following notation is used throughout unless otherwise stated. The pressure, density, gravitational
potential and adiabatic exponents are denoted by p, p, ¥, I'; and I's respectively. The equilibrium values of
these quantities are sometimes distinguished using a zero subscript. The position vector is denoted by r or
X, the time by ¢, the velocity by u, the surface radius of a spherical configuration by R, and the gravitational

constant by G. Vectors are denoted by boldface type.

Astronomical and Physical Data

Mass of the Sun Mg 2.0 x 10%%kg

Surface radius of the Sun  Rg 7.0 x 108m

Luminosity of the Sun Lo 3.8 x10%Jst
Gravitational constant G 6.67 x 10711 kg~ im3s—2
Speed of light in a vacuum ¢ 3.0 x 108 ms™!

Standard Formulae
Candidates may assume the following set of basic equations and formulae:

In spherical polar coordinates (r,, ¢)
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and
€ rey rsinfey
o/or 8/86 8/8¢

Ur TUg T sin 0U¢

Vxu = ———
r2siné

The spherical harmonic Y™m(6,¢) = P,'""(cos 6) exp(im¢), where P,'"'l denotes the associated Legendre func-
tion, satisfies the equation

1 8 (. oym 1 &ym m
w5 (0% ) + sin?g o+ HHDNT =0,

where [ is a non-negative integer and m is an integer such that |m| < I. Further

V2(Y‘mrl) =0 VZ(y;mr—l—l) =0.

In cylindrical polar coordinates (r,¢,2), with u = (ur,ug, u;),

1 . er rey e;
Veu = ‘aﬁ ;) + 1%+ %“—, Vxu = =|8/9r 8/5 8/8z
T Or r 0¢ z r u, rug u,
The material derivative is given by 5
D
-D—t = 52 + uV.
The equation of motion for an inviscid fluid may be assumed in the form
Du
P = —Vp = pVy.

The continuity equation may be assumed in the form

§+V-(pu) =0.

The energy equation may be assumed in the form

Dp TipDp _ 1
—l)_t- TDt = p(l"g 1) € pV F )

where € is the heat generated per unit mass, and F is the heat flux. For adiabatic motion, the right-hand
side of this equation is zero.

The gravitational potential satisfies Poisson’s equation, V3¢ = 47Gp, which may be assumed to have the

solution
Gp(r',t)

VI
v [r—r| e

¢(r, t) = -

where the integration is taken over the fluid volume V, and dV’ denotes the volume element d3r'.
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1 (a) Derive the virial theorem for a gaseous mass moving under forces due to pressure and self-gravity
in the form
1e7
2 dt?
where I, K and ¥ are defined to be

1= [eifav, K= —/pqu

G// px.)elr, t)dVdV’.

-]

=2K+3/pdV+‘I/,
v

and

The integrations are over the fluid volume, V, on the surface of which p = p = 0. What physically do
K and ¥ represent?

(b) The gas obeys an isothermal equation of state such that p = a®p, where a is a constant. What
physically does the quantity a represent? At time ¢t = 0, the fluid rotates uniformly such that

= xr,

where the origin of coordinates is at the centre of mass of the fluid and  is the constant angular velocity.
In addition, the maximum distance between two points on the zero density surface is D. Calculate the
value of d//dt at time ¢t = 0 and show that at the same instant

GM? .
D b

d?r

3= < 2M (D%Q% + 3a%) —

where M is the total mass of the fluid. Give a condition that will ensure that the mass begins to collapse.
Discuss the physical origin of the various terms in the above inequality for d2I/d¢2.

(c) Describe in qualitative terms the collapse of a rotating gas cloud, and discuss whether you think the
condition you derived in part (b) is a very strong condition for the collapse of a rotating cloud.
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2 An infinite layer of gas of uniform density lies between the two planes z = +H. Starting from Poisson’s
equation, or otherwise, find the gravitational potential ¥(z) at all points. Show that in the limit in
which H — 0 and 2pH — T, the gravitational potential becomes

‘lﬁ = 27 GZolzl .
A thin layer of gas lies in the z = 0 plane and has surface density %(z, t). Considering only motions

(4,0,0) in the z-direction, and assuming that variations depend only on z, show that the equations of
motion for the layer are ’

L | @

7 et =0
ou Lo _ _10P &y
a Yz T TIoz oz’

where P is the integrated pressure force per unit length across the sheet.

In equilibrium, P = B, ¥ = £, are both constants, u = 0 and ¥ = ¥(2z). The equilibrium is
now perturbed, so that perturbed quantities (which are assumed small enough for the equations to be
linearized) are proportional to exp(ikz + iwt), where k is positive, e.g.

L = 5y + Tlethetivt
Show that the corresponding gravitational potential is
Y = g — 2rGT k" le—klzlgikz+iwt

Assuming that P X7, where ' is a constant, derive the dispersion relation relating w and k. Identify
the physical origin of the various terms. Sketch the variation of w? as a function of k. How does this
differ qualitatively from the dispersion relation for plane perturbations of an infinite three-dimensional
gas cloud?

Assuming the above analysis can be applied to a cloud in the form of a circular disk, derive the cloud’s
Jeans mass. What is the most rapidly growing scale of variation? How do these two quantities scale
with density during the collapse if the cloud

(a) radiates heat away efficiently, and

(b) is opaque to radiation, with T = 5/37?
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3 A self-gravitating star of radius R has uniform density p. Derive expressions for the gravitational

acceleration and mass m(r) as functions of r, and deduce that the pressure is given by
2
p = ?ﬁsz (R*~-r?) .

The star undergoes small-amplitude, radial, adiabatic oscillations. Let § = u,./r, where u,e®¢ is the
radial velocity of a fluid element from its equilibrium position. Starting from the linearized perturbed
fluid equations, derive the linear adiabatic radial pulsation equation in the form

ﬁé.,.(ﬁ__i)ﬁ Ay,

dz? z 1-2z2)dz + 1-z2
where .
_ 3w 2030 -4
- 21rG1"1p 1"1
andz=r/R. '

The appropriate boundary conditions satisfied by & are that it is regular at £ = 0 and z = 1. Show by
direct substitution that '
fo =qq and §1 =a; + b1I2

are both eigenfunctions for suitable constants o, a1, b1 and eigenfrequencies w, all of which you should
determine. [You should normalize the eigenfunctions so that £ = 1 at z = 1, and you should take
'y =5/3.] Sketch the eigenfunctions as functions of z on a single diagram. Do you think these are the
eigenfunctions with the two lowest eigenfrequencies? Justify your answer.

Rewrite the pulsation equation in the form

d ds 2

—(P==] + Q¢ + *Re = 0.,

dz (sz> T e T RS '
where P, Q, R are functions of z (independent of w) that you should derive. Hence, show by direct
evaluation that & and & satisfy the orthogonality condition fol R&GE dz = 0.

Derive a variational principle of the form
w? = Flg

for radial pulsations of this star. [You are not required to prove that it is a variational principle.] Which
eigenfrequency would the trial function
§ = 22-1

be most suited for estimating? Evaluate your F[¢] for this trial function.
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4 A star with constant adiabatic exponent I'; undergoes small-amplitude nonradial oscillations about a
spherically symmetric equilibrium state, Show that, in the Cowling approximation, the radial velocity
ur(r)Y;™(8, ¢) exp(iwt) and Eulerian pressure perturbation p'(r)Y;™ (9, ¢) exp(iwt) satisfy the equations

d/ _ - . N?
= (r VRg) = —p Ty, (1w+ —) :

iw
d/, T _ iwr?p’ S?
-d—r (7‘ 2 1u,.) = _.“rlpl‘l/rl 1- F .

Here Il +1)r 14l éln
2 _ + 1P 2 _ = np - p
Sto= pr? and NV° = Iy dr dr J°
g being the gravité,tiona.l acceleration. Derive, stating your assumptions, the equation governing p modes
in the high w limit in the form

d (r2p?/T: dy rly 2 o2
E(Td“r) ¥ T 0 -8) =0, )

where
y = ript/Ty

Derive a similar equation governing g modes in the low w limit. -
If y is everywhere regular and p?/T1 /p—=0asr — R, prove that the p mode spectrum derived from
equation (x) is stable.
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5 A fluid has motion and variations only in one spatial direction z. By appropriately combining the
momentum and continuity equations in their standard form (with no external forces), and the adiabatic
energy equation which you may assume in the form

DU _ pDp
PDt T 5Dt

U being the internal energy per unit mass, derive the momentum and energy equations in conservative
form:
o)

é
E(lm) + %(Puz-i-P) =0,

9 1.2 K p. .1, -
at(pU+2pu) + az<pu(U+p+§u)) = 0.

Hence deduce the jump conditions for a steady shock:

P1uUl = pauz
Pl +p1 = poul +po
p1 1, Pz, 1,
U+=+= = U+ =+~
1+m+2% 2+m+2%

where subscripts 1 and 2 denote conditions just upstream and just downstream of the shock.

For a perfect gas, U = (T ~ 1)~!p/p, where T is the adiabatic exponent. Show that for a strong shock,
for which the upstream Mach number M; > 1, the jump conditions imply

P2 _ '+1 _ uy
o =1 w

D1 r+1°

Consider the following highly simplified model based on the above. The Sun loses mass at a rate M in
the form of the solar wind. At the orbit of the earth the wind is supersonic and the measured velocity is
up. At a greater distance r from the Sun, the wind encounters a strong stationary shock. At an even
greater distance, rp, the wind encounters the heliopause, the boundary between the solar wind and the
interstellar medium (which are assumed not to interpenetrate). Assume that the speed in the wind is
constant in the supersonic regime. Deduce that the shock is located at

. 1/2

M /
Ts = .

TUEpa

Between the shock and the heliopause, p and pu? + p are essentially constant, and the speed u declines
rapidly with distance from the Sun, so that pu? + p = Dz, Where p. is the pressure in the interstellar

medium. Show that 12
Ts = .
4mp,

Assuming that M is constant over the Sun’s main-sequence lifetime, show that the location of the
heliopause varies slowly with time as

Th x /3,

Taking M = 10~33M¢, per year, ug = 4 x 10° ms~*, the age of the Sun to be 5 x 10° years, and p, to

" be 107" Nm~2 (appropriate to a temperature of 10K and a density of 10° atoms m™3), estimate the
present positions of the shock and the heliopause.
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6 Write briefly on three of the following topics:

(a) effects of rotation in a solar-type star. Mixing in stellar interior;
(b) asteroseismology;

(c) spiral density waves in galactic disks;

(d) the effects of rotation and magnetic fields on star formation;
(e) “anomalous viscosity” in accretion disks;

(f) the dynamics of supernova remnants.

[End of paper]
S. V. Vorontsov



