Royal Holloway

UNIVERSITY OF LONDON

MSci EXAMINATION

NANOTECHNOLOGY

CP4505A

SUMMER 1999

Time Allowed: TWO HOURS

Answer **TWO** questions only. No credit will be given for attempting a further question.

Each question carries 20 marks. The mark *provisionally allocated* to each section is indicated in the margin.

TURN OVER WHEN INSTRUCTED

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	<i>m</i> _b	=	$4\pi \times 10^{-7}$	$\mathrm{H}\mathrm{m}^{-1}$
Permittivity of vacuum	$oldsymbol{e}_0$	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi e_0$	=	9.0×10^{9}	$\mathrm{m}\mathrm{F}^{1}$
Speed of light in vacuum	С	=	3.00×10^{8}	$m s^{-1}$
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	m _e	=	9.11 × 10 ⁻³¹	kg
Unified atomic mass constant	$m_{ m u}$	=	1.66×10^{-27}	kg
Proton rest mass	$m_{ m p}$	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	1.76×10^{11}	C kg ⁻¹
Planck constant	h	=	6.63×10^{-34}	Js
	$\mathbf{h} = h/2\pi$	=	1.05×10^{-34}	Js
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	S	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ¹ K ⁻¹
Avogadro constant	$N_{ m A}$	=	6.02×10^{23}	mol^1
Gravitational constant	G	=	6.67×10^{-11}	$\mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
Acceleration due to gravity	g	=	9.81	$m s^{-2}$
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	N m ⁻²

MATHEMATICAL CONSTANTS

e = 2.718 $\pi = 3.142$ $\log_e 10 = 2.303$

[8]

1. (a) What are meant by the terms *phase-breaking length* L_{ϕ} and *weak localisation* in a conductor?

Over what temperature range does the conductor with the parameters given below behave as (a) a one-dimensional (1D) conductor and (b) as a 2D conductor with respect to the weak localisation effect?

The conductor is a rectangular strip with dimensions: $L_x = 10 \ \mu\text{m}$ in the direction of the current, $L_y = 200 \ \text{nm}$ and $L_z = 10 \ \text{nm}$ in the transverse directions. The elastic scattering rate for the conduction electrons, $\tau^{-1} = 10^{13} \ \text{s}^{-1}$; the phase breaking rate has a temperature dependence $\tau_{\phi}^{-1} = AT^3 \text{s}^{-1}$ with $A = 10^8 \ \text{s}^{-1}\text{K}^{-3}$; the Fermi velocity, $v_F = 10^6 \ \text{m/s}$. [7]

- (b) Calculate the temperature dependence of the weak localisation correction to the resistance in the 1D and 2D cases for the same conductor.
- (c) Describe qualitatively the changes in the resistance of the conductor with magnetic field.
 What is the difference in the behaviour of the conductor in an applied magnetic field *H*, parallel to the *x*, *y*, and *z* axes? Analyze both the 1D and 2D cases. [5]

2.	(a)	Describe the negative process for the e-beam fabrication of metallic nanostructures.	[3]
	(b)	Give three examples of nanotechnology techniques based on the use of a scanning probe.	[3]
	(c)	Describe the "self-alignment" nanofabrication technique. Give an example used for the fabrication of sub-micron tunnel junctions.	[4]
	(d)	How does the resolution of a positive e-beam resist depend on the contrast? Use a two-Gaussian model for the proximity effect and an isotropic local model for the development process	[7]
	(e)	Explain the physical limitations of the resolution of photo-lithography and X-ray lithography. How the resolution depend on the contrast of the resist in each case?	[3]

3.	(a)	What is a mesoscopic conductor? Show that in a mesoscopic conductor the probability W , for an electron to get from point a to b differs from the classical value.	
			[3]
	(b)	Show that, in a mesoscopic conductor, quantum interference leads to quantum fluctuations in the probability W .	[5]
	(c)	Explain the meaning of the Universal Conductance Fluctuations (UCF) in diffusive mesoscopic conductors by using dimensional analysis of the expression for the conductance.	[5]
	(d)	Show that changes in the resistance of a mesoscopic metallic conductor take place in classically weak magnetic fields <i>H</i> , $\omega_c \tau \ll 1$, where $\omega_c = \frac{eB}{m}$, is the cyclotron	[7]
		frequency and τ is the mean time between collisions.	r. 1

Magnetic flux quantum $\phi_0 = \frac{h}{2e}$.