Royal Holloway

UNIVERSITY OF LONDON

MSci EXAMINATION

LOW TEMPERATURE PHYSICS

CP4500A

SUMMER 1998

Time Allowed: TWO HOURS

Answer TWO questions only. No credit will be given for attempting a further question.

Each question carries 20 marks. The mark *provisionally allocated* to each section is indicated in the margin.

TURN OVER WHEN INSTRUCTED

CP4500A/25 © Royal Holloway and Bedford New College 1998 1. (i) Discuss in detail the assumptions of the two fluid model of superfluidity in liquid ⁴He.

[5]

(ii) In terms of this model discuss, qualitatively and quantitatively, and using the data provided, the effect of turning on the heater inside the cylindrical tubes containing superfluid ⁴He shown in (a) (with a superleak) and (b) (without). In both cases the radius of the tube is 0.01m and the length 0.1m.

[5]

Note that: In (a) the system is thermally isolated and the heater is turned on until there is a temperature difference of 10mK between the left hand side and right hand side of the superleak, the initial temperature being 1.8K.

In (b) a steady heater power Q is supplied, such that there is a temperature gradient corresponding to a temperature difference of 10mK along the length of the tube with the temperature of the right hand wall held at 1.8K

(iii) For case (b) calculate the heater power Q required to produce the temperature gradient given. Show that the effective thermal conductivity of the column of superfluid ⁴He is of order that of high purity annealed copper at the same temperature (1000 WK⁻¹m⁻¹). Briefly state the difference in the processes of heat conduction in copper and superfluid ⁴He.

[4]

(iv) Discuss qualitatively any differences in the observations when the experiments are repeated at 1.2K.

[3]

(v) The macroscopic wavefunction describing the ground state of ⁴He is of the form $\Psi(r) = \Psi_0 \exp[i \varphi(r)]$

State the physical interpretation of Ψ_0 and $\varphi(r)$ in terms of parameters of the two fluid model. Show how this order parameter leads to vortex excitations, for which the circulation is quantized.

[3]

Some properties of superfluid ⁴He

Temperature (K)	Entropy (J K ⁻¹ kg ⁻¹)	Density (kg m ⁻³)	Normal viscosity (kg m ⁻¹ s ⁻¹)
1.8	550	150	130
1.2	51	150	182

- 3. Liquid ³He is a strongly interacting Fermi system with the following properties at very low temperatures
 - The low temperature heat capacity is proportional to temperature, $C = \gamma T$, but the coefficient γ is greater than that for an ideal Fermi gas of the same density and atomic mass. The enhancement of γ increases with increasing pressure.
 - The nuclear magnetic susceptibility χ is independent of temperature, significantly larger than that of an ideal Fermi gas, and χ / γ is pressure dependent.
 - The viscosity varies as T^{-2} .
 - The thermal conductivity is proportional to T^{-1} and greater than that of copper at 3mK.
 - (i) Account for these observations, in as much detail as possible, within the framework of Landau Fermi liquid theory.

[14]

[3]

The graph below shows the attenuation of sound at two frequencies by liquid ³He

- (ii) Show the data can be well described by the expression for the attenuation α ,
 - $\alpha = A\omega^2\tau/(1+\omega^2\tau^2)$, where ω is the angular frequency of the sound, τ is the quasiparticle relaxation time, and A is a constant.
- (iii) Discuss briefly the interpretation of these results in terms of Landau theory. [3]

