Royal Holloway ## UNIVERSITY OF LONDON ### **MSci EXAMINATION** LOW TEMPERATURE PHYSICS CP4500A **SUMMER 1998** Time Allowed: TWO HOURS Answer TWO questions only. No credit will be given for attempting a further question. Each question carries 20 marks. The mark *provisionally allocated* to each section is indicated in the margin. # TURN OVER WHEN INSTRUCTED CP4500A/25 © Royal Holloway and Bedford New College 1998 1. (i) Discuss in detail the assumptions of the two fluid model of superfluidity in liquid ⁴He. [5] (ii) In terms of this model discuss, qualitatively and quantitatively, and using the data provided, the effect of turning on the heater inside the cylindrical tubes containing superfluid ⁴He shown in (a) (with a superleak) and (b) (without). In both cases the radius of the tube is 0.01m and the length 0.1m. [5] Note that: In (a) the system is thermally isolated and the heater is turned on until there is a temperature difference of 10mK between the left hand side and right hand side of the superleak, the initial temperature being 1.8K. In (b) a steady heater power Q is supplied, such that there is a temperature gradient corresponding to a temperature difference of 10mK along the length of the tube with the temperature of the right hand wall held at 1.8K (iii) For case (b) calculate the heater power Q required to produce the temperature gradient given. Show that the effective thermal conductivity of the column of superfluid ⁴He is of order that of high purity annealed copper at the same temperature (1000 WK⁻¹m⁻¹). Briefly state the difference in the processes of heat conduction in copper and superfluid ⁴He. [4] (iv) Discuss qualitatively any differences in the observations when the experiments are repeated at 1.2K. [3] (v) The macroscopic wavefunction describing the ground state of ⁴He is of the form $\Psi(r) = \Psi_0 \exp[i \varphi(r)]$ State the physical interpretation of Ψ_0 and $\varphi(r)$ in terms of parameters of the two fluid model. Show how this order parameter leads to vortex excitations, for which the circulation is quantized. [3] #### Some properties of superfluid ⁴He | Temperature (K) | Entropy (J K ⁻¹ kg ⁻¹) | Density (kg m ⁻³) | Normal viscosity (kg m ⁻¹ s ⁻¹) | |-----------------|---|-------------------------------|--| | 1.8 | 550 | 150 | 130 | | 1.2 | 51 | 150 | 182 | - 3. Liquid ³He is a strongly interacting Fermi system with the following properties at very low temperatures - The low temperature heat capacity is proportional to temperature, $C = \gamma T$, but the coefficient γ is greater than that for an ideal Fermi gas of the same density and atomic mass. The enhancement of γ increases with increasing pressure. - The nuclear magnetic susceptibility χ is independent of temperature, significantly larger than that of an ideal Fermi gas, and χ / γ is pressure dependent. - The viscosity varies as T^{-2} . - The thermal conductivity is proportional to T^{-1} and greater than that of copper at 3mK. - (i) Account for these observations, in as much detail as possible, within the framework of Landau Fermi liquid theory. [14] [3] The graph below shows the attenuation of sound at two frequencies by liquid ³He - (ii) Show the data can be well described by the expression for the attenuation α , - $\alpha = A\omega^2\tau/(1+\omega^2\tau^2)$, where ω is the angular frequency of the sound, τ is the quasiparticle relaxation time, and A is a constant. - (iii) Discuss briefly the interpretation of these results in terms of Landau theory. [3]