Royal Holloway

UNIVERSITY OF LONDON

MSci EXAMINATION

RELATIVISTIC QUANTUM MECHANICS CP4241A

SUMMER 1999

Time Allowed: TWO AND A HALF HOURS

Answer **THREE** questions only. No credit will be given for attempting any further questions.

Each question carries 20 marks. The mark *provisionally allocated* to each section is indicated in the margin.

TURN OVER WHEN INSTRUCTED

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	m)	=	$4\pi \times 10^{-7}$	$\mathrm{H}\mathrm{m}^{-1}$
Permittivity of vacuum	$oldsymbol{e}_0$	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi e_0$	=	9.0×10^{9}	$\mathrm{m}\mathrm{F}^{1}$
Speed of light in vacuum	С	=	3.00×10^{8}	$m s^{-1}$
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	m _e	=	9.11×10^{-31}	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	m _p	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	1.76×10^{11}	C kg ⁻¹
Planck constant	h	=	6.63×10^{-34}	Js
	$\mathbf{h} = h/2\pi$	=	1.05×10^{-34}	Js
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	S	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	$\mathbf{J} \operatorname{mol}^1 \mathbf{K}^{-1}$
Avogadro constant	N_{A}	=	6.02×10^{23}	mol^1
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	$m s^{-2}$
Volume of one mol of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	N m ⁻²

MATHEMATICAL CONSTANTS

 $e = 2.718 \qquad \pi = 3.142 \quad \log_e 10 = 2.303$

[10]

1. Use rotational invariance of the hydrogen atom Hamiltonian to show that all the orbital angular momentum states with eigenvalue $\mathbf{l}(\mathbf{l}+1)\mathbf{h}^2$ of \hat{L}^2 are degenerate in energy. [4]

- page 1 -

Assume that the hydrogen atom Hamiltonian can be written in the form

$$\hat{H} = -\frac{1}{4} \left(\frac{e^2}{4\pi\varepsilon_0} \right)^2 \left(\hat{I}^2 + \hat{K}^2 + \frac{1}{2} \right)^{-1}$$

in units where $\mathbf{h} = 1$ and the mass of the electron is m = 1, where

$$\hat{I} = \frac{1}{2} \left(\hat{L} + \hat{M} \right)$$
 and $\hat{K} = \frac{1}{2} \left(\hat{L} - \hat{M} \right)$ with \hat{M} the Lenz vector.

Also assume that \hat{I} and \hat{K} commute with each other, separately obey an angular momentum algebra and that $\hat{L} \cdot \hat{M} = 0$.

Show that the energy levels of the hydrogen atom may be written in the form

$$E_n = -\frac{1}{2n^2} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2$$

where *n* is an integer, and that they have degeneracy n^2 .

Show that, for a fixed value of *n*, the allowed values of the angular momentum quantum number **1** run from 0 to *n*-1 in integer steps. [3]

Show that this last result also implies degeneracy n^2 . [3]

2. Discuss the helicity operator for a Dirac particle.

Discuss in what way we need to modify the solutions of the Dirac equation to be able to describe neutrinos and anti-neutrinos. [3]

Assume that the Dirac matrices may be represented by

$$\beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \alpha^{i} = \begin{pmatrix} \sigma^{i} & 0 \\ 0 & -\sigma^{i} \end{pmatrix}, \quad i = 1, 2, 3,$$

where σ^i are the 2 x 2 Pauli spin matrices.

Using this representation for the Dirac matrices, and writing $\psi = e^{-ip \cdot x} \begin{pmatrix} \phi \\ \chi \end{pmatrix}$, for positive energy plane wave solutions of the Dirac equation, where ϕ and χ are 2 component column matrices, derive from the Dirac equation explicit equations for ϕ and χ for the case of a

neutrino. Also carry through the corresponding calculation for the case of an anti-neutrino.

[5]

[7]

[3]

Hence, show how to construct spinors to describe the neutrino and anti-neutrino. [9]

(You may assume that $\gamma^0 = \beta$ and $\gamma^i = \beta \alpha^i$ in the usual notation. You may also assume that $\sigma^1 \sigma^2 \sigma^3 = iI$.)

3. Describe Dirac hole theory and discuss the production of an electron-positron pair by a photon using it.

Using Dirac hole theory discuss how negative energy solutions of the Dirac equation can be used to represent anti-particles.

The charge conjugation operation on a Dirac spinor is $\psi \to \psi_c = C \gamma^0 \psi^*$ where * denotes complex conjugate and $C = i \gamma^2 \gamma^0$. Derive the behaviour under charge conjugation of $\overline{\psi} \gamma^{\mu} \psi$ and $\overline{\psi} \gamma^{\mu} \gamma_5 \psi$ where $\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$. [7]

Hence, discuss why charge conjugation invariance is broken by the weak interactions. [3]

(You may *assume C* has the properties $C^{\dagger} = -C$, $C^{2} = -I$, $\gamma^{0} C \gamma^{0} = -C$ and $\gamma^{\mu} C = -C (\gamma^{\mu})^{T}$ where *T* denotes transpose and \dagger denotes Hermitian adjoint. You may also assume that $\gamma_{5}^{T} = \gamma_{5}^{\dagger} = \gamma_{5}$ and $\{\gamma_{5}, \gamma^{\mu}\} = 0$.) [3]

4. For non-relativistic quantum mechanics, give an argument that the wave functions at times t and t' are related by

$$\Psi(t',\mathbf{x}') = i \int d^3 x G(t',\mathbf{x}';t,\mathbf{x}) \,\Psi(t,x),$$
[4]

for t > t, where *G* is the propagator.

When the interaction potential V is turned on at time t_1 for a short time interval Δt_1 , show that the wave function $\psi(t', \mathbf{x}')$ at time $t' > t_1 + \Delta t_1$ is related to the free particle wave function φ by

$$\psi(t', \mathbf{x}') = i \int d^3 x \, G_0(x'; x) \, \phi(x) + \int d^3 x_1 \, G_0(x'; x_1) \, V(x_1) \, \phi(x_1) \, \Delta t_1$$

where G_0 is the free propagator and (t, \mathbf{x}) has been abbreviated to x, on the right-hand-side.

[12]

[4]

Deduce a relationship between the propagator and the free propagator.

5. Starting from the S-matrix element to first order in the interaction in propagator theory, show that the S-matrix element for electron scattering from a Dirac proton may be written as

$$S_{f\,i} = -i\,e^2 \int d^4x \int d^4y \,\overline{\psi}_f(x) \gamma_\mu \psi_i(x) \,D_F(x-y) \,\overline{\psi}_f^P(y) \gamma^\mu \psi_i^P(y)$$

where D_F is the photon propagator, ψ_i and ψ_f are the free particle wave functions for the initial and final electrons, and ψ_i^P and ψ_f^P are free particle wave functions for the initial and [16] final protons.

Derive an explicit expression for the momentum space photon propagator. [4]

You may not assume the Feynman rules.