
Quantum Mechanics 3C26/2002. SOLUTIONS.

All Questions may be attempted. Credit will be given for all correct
work done.
[For guidance: A student should aim to answer correctly the equivalent of THREE
complete questions in the time available].

The numbers in the square brackets in the right-hand margin indicate the
provisional allocation of marks per subsection of a question.

1. What is meant in quantum mechanics by the phrase Collapse of the Wave
Function? [2]

A quantum system resides in general in a superposition of eigen-
states until a measurement is made. The measurement causes
the system to jump irreversibly with a certain probability into
one of its eigenstates. The probability of jumping into a particu-
lar eigenstate is given by the squared modulus of its probability
amplitude. This is known as collapse or reduction of the wave
function.

What is the Copenhagen Interpretation of quantum mechanics ? [4]

The Copenhagen Interpretation, associated with Nils Bohr, places
the emphasis on measurement. According to this doctrine, quan-
tum mechanics cannot answer the question of what is happening
in detail in an experiment. But if an experiment is carried out
with a full specification of the entire apparatus used, the sur-
rounding environment and the precise procedure adopted then
quantum mechanics can predict the probability of a particular
outcome, i.e. the result of the experiment.

Explain, giving in each case an example which illustrates your explanation,
what is meant in quantum theory by (a) Complementarity, (b) Non-
locality. [8]

(a) Complementarity - Mutually exclusive descriptions (e.g. wave,
particle) can be applied to a quantum system but not simultane-
ously. The wave nature and corpuscular nature of a particle are
complementary aspects and never come into conflict in an experi-
mental situation. Example - in the double slit experiment we can
either observe an interference pattern between waves or we can
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determine trajectories of particles. But one excludes the other
- the determination of trajectories destroys the interference pat-
tern; the creation of an interference pattern precludes a precise
particle trajectory.

[Could also cite as an example the beam-splitter experiment with
semi-silvered mirrors, which is essentially the same physics.]

(b) Non-locality. This is a property of entangled states. Action
can be transmitted from one place to affect simultaneously the
situation at another arbitrarily distant one.

Classic example is a pair of spin-1/2 particles in a state of total
spin S=0. The individual spin components are not defined; all
that is known is that they are different; one up, the other down.
The particles move apart; measurement of the spin component of
one of them immediately fixes the spin component of the other,
even though they may be separated by a distance such that no
subluminary signal could pass between them. The particles are
correlated at all separations. [Could also quote the example given
by Einstein, Podolsky and Rosen of a particle separating into
two identical fragments which move apart; or that of a pair of
polarised photons.]

Discuss the problems that arise when the measurement process is examined
in the context of the interaction of a microscopic quantum system and a
supposed macroscopic measuring apparatus. [3]

The Copenhagen Interpretation implies the existence of two do-
mains, a microscopic quantum domain and a macroscopic, deter-
ministic classical one. Measurements take place at the classical
level by a classical measuring device interacting with the quantum
system.

But where should the line be drawn between measured object,
apparatus, observer? Where does the boundary lie between quan-
tum system subjected to a measurement and the measuring appa-
ratus? If quantum mechanics is a universal theory then all devices
should be subject to quantum effects, so when a device interacts
with a quantum system it too should pass into a superposition
of states, each one corresponding to an eigenstate of the system.
The apparatus can only be deemed to have made a measurement
when it too collapses into one of its eigenstates. But this requires
a second device to perform a measurement on it, and the second
a third, and so on, leading to an infinite chain. How can a final
collapse be attained to put an end to the chain of measurements?
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Why are macroscopic objects not observed to exhibit quantum
effects of superposition of states, interference ?

Discuss briefly attempts that have been made to address these problems. [3]

These include (brief details expected, not mere headings)

The ”quantum potential” approach of Bohm and Hiley, which
takes into account the experimental context (environment, appa-
ratus, observer).

The idea that the agent of collapse is a conscious mind (Wigner.)

The many-worlds solution (Everett, Deutsch)

Theories based on alternative histories (Gell-Mann) and decoher-
ence.

[All based on material presented in lectures and notes handed out to all
students summarising these lectures.]

3



2. The Hamiltonian operator H for a one-dimensional harmonic oscillator of
mass m and angular frequency ω is

H = p2/2m+ 1
2
mω2x2

The creation and annihilation operators a+ and a− are defined by

a+ =
1√

2mh̄ω
(p+ imωx); a− = a†+,

where x and p are position and momentum operators satisfying [x, p] = ih̄.

From these definitions it may be shown that

[a−, a+] = 1

and
H = (a+a− + 1

2
)h̄ω

[H, a+] = a+h̄ω; [H, a−] = −a−h̄ω

If H | n >= En | n > show that

Ha+ | n >= (En + h̄ω)a+ | n >; Ha− | n >= (En − h̄ω)a− | n > .

[3]

SOLUTION (From lectures)

(Ha+ − a+H) | n >= a+ | n > h̄ω

Ha+ | n > −a+En | n >= a+ | n > h̄ω

or
Ha+ | n >= (En + h̄ω)a+ | n >

Similarly
Ha− | n >= (En − h̄ω)a− | n >

What is the interpretation of these equations?

a± | n > is eigenvector of H corresponding to eigenvalue En ± h̄ω.

Show further that the lowest eigenvalue E0 ≥ 1
2
h̄ω and that En = (n+ 1

2
)h̄ω
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To show that En ≥ 1
2
h̄ω : (Bookwork)

H | n >= En | n >

(a+a− + 1
2
)h̄ω | n >= En | n >

h̄ω < n | a+a− | n > +1
2
h̄ω < n | n >= En < n | n >

Let a− | n >= C | n′ > where C is a complex constant. Then
< n′ | a+ = C∗ < n′ | and

h̄ω | C |2< n′ | n′ > +1
2
h̄ω < n | n >= En < n | n >

therefore

En = h̄ω
| C |2< n′ | n′ >

< n | n >
+ 1

2
h̄ω

The scalar products are squared moduli and always positive or
zero: Hence

En ≥ 1
2
h̄ω.

To find energy eigenvalues:

a− | 0 >= 0 because a− is a lowering operator and | 0 > is the
lowest eigenstate. therefore

h̄ωa+a− | 0 >= (H − 1
2
h̄ω) | 0 >= 0.

H | 0 >= 1
2
h̄ω | 0 >

E0 = 1
2
h̄ω.

Now use the raising operator a+ :

Operate on | 0 > with a+ :

Ha+ | 0 >= (E0 + h̄ω)a+ | 0 > with E0 = 1
2
h̄ω. Therefore

a+ | 0 > is proportional to the eigenvector | 1 > corresponding to
eigenvalue E1 = (1 + 1

2
)h̄ω.

Repeating the operation we find that

a2
+ | n > is proportional to the eigenvector | 2 > corresponding to

eigenvalue E2 = (E1 + h̄ω) = (2 + 1
2
)h̄ω.

Repeat n times and we find that En = (n+ 1
2
)h̄ω. [5]

Matrix element:

If a+ | n >= Xn | n+ 1 >, the constant

Xn is
Xn = i(n+ 1)1/2
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and also
a− | n >= −in1/2 | n− 1 > .

hence

< m | a+ | n >= i(n+ 1)
1
2 < m | n+ 1 >= i(n+ 1)

1
2 δmn+1

also, similarly

< m | a− | n >= −in
1
2 δmn−1

Now from the definitions,

x = −i
√

h̄

2mω
(a+ − a−)

Hence

< m | x | n >=

√
h̄

2mω
[
√
n+ 1δmn+1 +

√
nδmn−1]

[6]

(Down to here, based on lecture notes. The following section is new to the
candidates.)

A linear harmonic oscillator of charge q is placed in a weak electric field F
directed along the x-axis, which gives rise to a perturbing potential Fqx. Use
perturbation theory to determine the energy levels to second order. Show
also that an exact solution to the problem yields the same result.

Using the perturbation formula given below with λV = Fqx: Di-
agonal elements of x are zero, so first order correction is zero.

Off diagonal matrix elements are zero unless m = n+1 or m = n−1
Substitution gives

Wn = En + q2F 2 h̄

2mω
[
n

+h̄ω
+
n+ 1

−h̄ω
]

= En −
q2F 2

2mω2

Exact Solution:

H =
−h̄2

2m

d2

dx2
+ 1

2
mω2x2 + qFx

Make substitution to complete the square

y = x+
qF

mω2
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Then

H =
−h̄2

2m

d2

dy2
+ 1

2
mω2y2 − q2F 2

2mω2

This is the Hamiltonian of an oscillator with the same frequency
with a constant term added to the Hamiltonian. The energy levels
are just shifted by this constant:

Wn = En −
q2F 2

2mω2

which is the same result as that given by second order perturba-
tion theory. [6]

Note: If a quantum system described by a time-independent Hamiltonian
H0 which possesses a known discrete set of non-degenerate eigenvalues En

with corresponding orthonormal eigenfunctions un subjected to a perturbing
Hamiltonian λV where λ is a small, real parameter, application of pertur-
bation theory shows that the energy to second order in λ is given by

Wn = En+ < un | λV | un > +
∑
m6=n

|< um | λV | un >|2

En − Em

.
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3. A Hermitian operator A has a complete set of orthonormal eigenvectors
| n > .Show that in the basis | n >, A is represented by a diagonal matrix
with elements An′n = anδn′n where an is the eigenvalue of A corresponding
to eigenvector | n > . [2]

An′n =< n′ | A | n >

=< n′ | an | n >= an < n′ | n >= anδn′n

Hence A is diagonal with elements an.

What is the commutation relation satisfied by J2 and Jz, and what does it
tell us about these two observables? [2]

[J2, Jz] = 0.

This means that J2 and Jz are compatible and have simultaneous eigenvec-
tors.

If J+ and J− are defined by

J+ = Jx + iJy ; J− = Jx − iJy,

show that
[Jz, J+] = h̄J+ ; [Jz, J−] = −h̄J−,

and hence that J+ | j,m > and J− | j,m > are proportional to | j,m +
1 >and | j,m− 1 > respectively.

Jz(Jx + iJy)− (Jx + iJy)Jz = JzJx − JxJz + i(JzJy − JyJz)

Using the commutation relations this gives

ih̄Jy + i2h̄(−Jx)

= h̄(Jx + iJy) = h̄J+.

Similarly,

Jz(Jx − iJy)− (Jx − iJy)Jz = JzJx − JxJz − i(JzJy − JyJz)

Using the commutation relations this gives

ih̄Jy − i2h̄(−Jx)

= −h̄(Jx − iJy) = h̄J−.

These relations tell us that J+ | j,m > and J− | j,m > are propor-
tional to | j,m+ 1 > and | j,m− 1 > respectively. [4]
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(Mainly based on material presented in lectures down to here. What follows
is new.)

A particle has total spin quantum number s = 3/2. Its spin operator is S.
What are the eigenvalues of (a) Sz and (b) S2 ?

Eigenvalues of Sz are 3/2h̄, 1/2h̄,−1/2h̄,−3/2h̄.

Eigenvalue of S2 is 3
2
× (3

2
+ 1)h̄2.

Write down the matrices of Sz and S2 in the basis formed from the nor-
malised eigenvectors | s,m > of Sz;

Matrix of Sz is

Sz =


3
2
h̄ 0 0 0
0 1

2
h̄ 0 0

0 0 −1
2
h̄ 0

0 0 0 −3
2
h̄


Matrix of S2 is 15

4
h̄2I where I is the 4× 4 unit matrix.

Verify that they commute.

They commute because all 4 × 4 matrices commute with a multiple of the
4× 4 unit matrix. [3]

Given that

S± | s,m >= h̄
√
s(s+ 1)−m(m± 1) | s,m± 1 >

find the matrix of Sx in the same basis. Verify that the eigenvalues of Sx

are the same as those of Sz. [9]

Sx =
1

2
(S+ + S−)

also

S+ | s,m >= h̄

√
15

4
−m(m+ 1) | s,m+ 1 >

so that

< s,m′ | S+ | s,m >= h̄

√
15

4
−m(m+ 1)δm′m+1

< s,m′ | S− | s,m >= h̄

√
15

4
−m(m− 1)δm′m−1

Hence the matrices are

S− =


0 0 0 0√
3h̄ 0 0 0
0 2h̄ 0 0
0 0

√
3h̄ 0


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S+ =


0

√
3h̄ 0 0

0 0 2h̄ 0
0 0 0

√
3h̄

0 0 0 0


Hence

Sx =
1

2
(S+ + S−) =

1

2


0

√
3h̄ 0 0√

3h̄ 0 2h̄ 0
0 2h̄ 0

√
3h̄

0 0
√

3h̄ 0



Eigenvalues λ of Sx are the roots of

det


−λ

√
3h̄
2

0 0
√

3h̄
2

−λ h̄ 0

0 h̄ −λ
√

3h̄
2

0 0
√

3h̄
2

−λ

 = 0

Expanding the determinant,

−λ(−λ[λ2 − 3

4
h̄2]− h̄(−λh̄)]−

√
3h̄

2
[

√
3h̄

2
(λ2 − 3

4
h̄2] = 0

or

λ4 − 5

2
h̄2λ2 +

9

16
h̄4 = 0

By substitution the values

±3

2
h̄,±1

2
h̄

all satisfy this equation.
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4. The Hamiltonian operator H describing a quantum mechanical system in
spherical polar co-ordinates has a lowest energy eigenvalue E0. Show, for
any normalisable function F (r) that satisfies the boundary conditions ap-
propriate to a bound state, that the expectation value E(F ) of H satisfies

E(F ) =

∫
F (r)∗HF (r)dr∫
F (r)∗F (r)dr

≥ E0. [5]

Use the expansion postulate to expand F (r) in the basis formed
by the eigenvectors of H, satisfying

Hψi = Eiψi; < ψi | ψj >= δij :

F =
∑

i

aiψi

The expectation value of H in state F is

< H >=
∫
F ∗HFdτ

Thus
< H >=

∫ ∑
i

a∗iψ
∗
iH

∑
j

ajψjdτ

=
∫ ∑

i,j

a∗i ajψ
∗
iEjψjdτ

=
∑
i,j

a∗i ajEiδij =
∑

i

| ai |2 Ei

Now
< F | F >=

∫
F ∗Fdτ

=
∫ ∑

i,j

a∗i ajψ
∗
iψjdτ

=
∑

i

| ai |2

Let E0 be the lowest eigenvalue of H, i.e. E0 ≤ Ei for all i 6= 0.
Then ∑

| ai |2 Ei ≥
∑

i

| ai |2 E0 = E0

∑
i

| ai |2

Or ∫
F ∗HFdτ ≥ E0

∫
F ∗Fdτ

E0 ≤
∫
F ∗HFdτ∫
F ∗Fdτ

= E(F )
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Explain how this expression can be used to find an approximation to the
ground state energy which is an upper limit on its value. [2]

Select a trial function Ft(a, b, c...r) depending on variational param-
eters a, b, c.... Vary the parameters to minimise E(Ft). The result
is an upper bound on the exact value of E0.

(Bookwork down to here. The following problem is new but a similar exam-
ple using a different V (r) was given as a homework problem.)

Use a trial function of the form

F (r, α) = e−αr/2

where α is a variational parameter, to investigate the properties of a particle
of mass m in a central potential of the form

V (r) = V0(r − 3)e−r

where V0 is a positive constant. Show that an upper bound on the ground
state energy may be written

E(α) =
h̄2α2

8m
− 3V0α

4

(1 + α)4
[5]

where α is a solution of the equation

h̄2(1 + α)5

4m
= 12V0α

2. [5]

We need to evaluate

E(α) =
< F | H | F >

< F | F >

H =
−h̄2

2m
∇2 + V0(r − b)e−µr

∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2sin2θ

∂2

∂φ2

F = e−αr/2
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independent of θ and φ

Thus

< F | F >=
∫
e−αrr2dr sin θdθdφ =

8π

α3

∇2e−αr/2 =
1

r2

d

dr
(r2 d

dr
e−αr/2)

=
1

r2

d

dr
(r2(−α/2)e−αr/2

=
−α
2r2

d

dr
(r2e−αr/2)

= − α

2r2
(2r − α

2
r2)e−αr/2

so

< T >=<
−h̄2

2m
∇2Φ >

=
4παh̄2

4m

∫
2re−αr − αr2

2
e−αrdr

with I1 = 1/α2 and I2 = 2/α3 this reduces to

πh̄2

αm
.

< V >= 4πV0

∫
(r − b)e−(µ+α)rr2dr.

= 4πV0[
6

(µ+ α)4
− 2b

(µ+ α)3
]

then

E(α) =
h̄2α2

8m
+

V0α
3

(µ+ α)4
(3− bµ− bα)

If b = 3, µ = 1 this becomes

E(α) =
h̄2α2

8m
− 3V0bα

4

(µ+ α)4

To minimise, differentiate w.r.t. α and set derivative to zero:

dE

dα
=
h̄2α

4m
− 12V0α

3

(1 + α)4
+

12V0α
4

(1 + α)5

=
h̄2α

4m
− 12V0α

3

(1 + α)5
= 0
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or
h̄2

4m
=

12V0α
2

(1 + α)5

For just one bound state, E(α) = 0. or

h̄2α2(1 + α)4 = 24mV0α
4

Substituting in the equation for α gives, after a little algebra,
α = 1. Hence

V0 =
2h̄2

3m
.

Note: If

In =
∫ ∞

0
e−axxndx

then
In =

n

a
I(n−1)

and ∫ ∞

0
e−axdx =

1

a
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5. A spin-1/2 particle is placed in an external uniform magnetic field B = Bẑ
where ẑ is a unit vector in the z-direction. The Hamiltonian operator is

H = γBSz

where Sz is the z-component of the spin operator S. Find the energy eigen-
values and show that the wave function at time t is

ψ(t) = C1e
−iωt/2α+ C2e

iωt/2β

where C1 and C2 are constants and ω = γB. α and β are eigenvectors of
Sz corresponding to eigenvalues h̄/2 and −h̄/2 respectively:

α =
(

1
0

)
, β =

(
0
1

)
At time t = 0 the particle is in an eigenstate of Sx corresponding to eigen-
value h̄/2

ψ(0) =
1√
2
(α+ β)

At what times will it be in an eigenstate of Sx corresponding to eigenvalue
−h̄/2

ψ(t) =
1√
2
(α− β)

Find the expectation value of Sx at time t.[
S = h̄

2
σ where σ = (σx, σy, σz) and in the basis formed by α and β the

Pauli spin matrices are

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

]
SOLUTION.

The Hamiltonian H = γBSz is independent of time t. Solutions to
the Time Dependent Schrödinger Equation are of the form

ψ(t) = ψ(0)e
−iEt

h̄

where ψ(0) is a solution of the Time Independent Schrödinger
Equation

Hψ(0) = Eψ(0)

or
γBSzψ(0) = Eψ(0)
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Szψ(0) =
E

γB
ψ(0)

The eigenvalues of Sz are ± h̄
2

corresponding to eigenvectors α and
β respectively. Thus the energy eigenvalues are

E = E± = ±1
2
h̄γB

The general solution to the TDSE is

ψ(t) = C1αe
−iE+t

h̄ + C2βe
iE−t

h̄

or
ψ(t) = C1αe

−iγBt
2 + C2βe

iγBt
2

= C1αe
−iωt

2 + C2βe
iωt
2

where ω = γB.

[7]

At t = 0,

ψ(0) = C1α+ C2β =
1√
2
(α+ β)

Therefore C1 = C2 = 1√
2
.

ψ(t) =
1√
2
(αe

−iωt
2 + βe

iωt
2 )

ψ(t) =
1√
2
e
−iωt

2 (α+ βeiωt)

We require t such that eiωt = −1 : i.e. ωt = π, 3π, 5π, · · · or

ωt = (2N + 1)π,N = 0, 1, 2, · · ·

[5]

(As far as here, material presented in lectures. The next part is
new.)

EXPECTATION VALUE OF Sx :

Sx = h̄
2
σx

< Sx >=
h̄

4

(
e

1
2

iωt e−
1
2

iωt
) ( 0 1

1 0

)(
e−

1
2

iωt

e
1
2

iωt

)

< Sx >=
h̄

4

(
e

1
2

iωt e−
1
2

iωt
)( e

1
2

iωt

e−
1
2

iωt

)
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=
h̄

4
(eiωt + e−iωt) =

h̄

2
cosωt.

The uncertainty in Sx, ∆Sx, is given by the absolute value of√
(< S2

x > − < Sx >2)

S2
x =

h̄2

4
I

where I is the 2× 2 unit matrix. Hence

∆Sx =

√
h̄2

4
(1− cos2 ωt)

=
h̄

2
| sinωt | .

This is zero when ωt is an integer multiple of π, i.e. the system is
in an eigenstate of Sx at these times, in accordance with the first
part of the question. [8]

END OF PAPER.
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