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This paper has two Sections and you should attempt bothoBesctPlease read care-
fully the instructions given at the beginning of each sectio

Calculators are NOT permitted in this examination.

Numerical answers where required may be determined apmabely, to within fac-
tors ~ 5, or left in terms of trigonometric or other transcendentahftions.

You may quote the following results unless the questionfggaly asks you to derive
it. All notation is standard. Vectors are denoted by boléfagpe, e.g.A, while
scalars, including the magnitude of a vector, are in italies.,|E| = E.

() The Lorentz force on a particle of charge g moving in alea@nd magnetic fields
E andB respectively is given by

F=q(E+vxB)
(i) Maxwell’'s Equations
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where ggg = 1/¢2.

(i) The electric and magnetic fields andB as measured in a laboratory frame are
related to the field&’ andB’ measured in a frame moving relative to the laboraty
frame at a velocity by the transformation laws

I = E
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(iv) The MHD equations for a plasma with electrical conduityi o:

ap
—+0-(pvV) = 0
il (pV)

ot

<%+V~D> (pp™¥) = 0
oB
ot

E+VxB = j/o

d
p<—+V~D>V = —Dp+%(DxB)xB

1
= Ox(VxB)+—0[?B
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(v) Divergence of a vector in spherical coordinates:
HA= rizaﬂr(rzAr) + rsilne%(AeSine) + rsilné)aai(;p
(vi) The following vector identities and relations
a-(bxc) = b-(cxa)=c-(axb)
O-(axb) = b-(Oxa)—a-(0xb)
Ox(axb) = a(d-b)+(b-O)a—b(0-a)—(a-0)b

(OxB)xB = (B~D)B—D(B—2)

2
Ox(OxB) = 0O(0-B)—0%B
ax(bxc) = (a-c)b—(a-b)c
(axb)xc = (a-c)b—(b-c)a

(vii) The following numerical values of physical constaautsl parameter values:

Name symbol value
Electronic Charge e 16x10°1°C
Electron volt eV 16 x 10719 Joules
Electron mass Me 9.1x 10 31 kg
Proton mass Mp 1.67x 102" kg
Permeability of free space o 41tx 10~ Henry/m
Permittivity of free space gy 8.85x 1012 Farad/m
Speed of light in vacuo c 3x 18 mi/s
Earth Radius Re 6371 km
Astronomical Unit AU 15x 10" m
Solar Radius R 6.96x 108m



SECTION A

Al

A2.

A3.

A4.

A5.

Each question carries 10 marks. You should attempt ALL oprest

The Magnetic Reynolds numb®&;, is used to distinguish different types of plasma be-
haviour. DefineRy, explaining all the terms used. Describe the behaviourefitto limiting
cases oRy. Explain how the “plasma cell” model of astrophysical imietons depends on
Rm.

A hot beam-like flow of plasma is observed in space. lllustraith the aid of a sketch, how
this may be explained by a reconnection process. Indicat®mer observations that may
support that explanation.

Consider a particle of mass and charge moving non-relativistically in a static, uniform
magnetic fieldB = ByZ with a zero electric field. Show that

Vy = Vv Sin(Qct)

vy = Vv cos(Qct)

satisfies the equations of motion, when the initial veloeity = 0 is (0,v,,0). Give a
mathematical expression f6k;, and explain its significance. From this solution find the
radius of gyration of the motion.

Explain what is meant in MHD by “flux freezing.” Give two aspioysical examples, includ-
ing a brief explanation or description of how flux freezingmiests itself there and what the
consequences are.

Express the magnetic moment of a particle in terms of itshpategle and energy. Why is
the magnetic moment important, and under what circumss&gh8ascuss briefly one astro-
physical example of particle motion where the magnetic mdrnesan be used to constrain
particle motion. In your answer relate any variations ofpheticle pitch angle distribution
to the magnetic field configuration.
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SECTION B

Each question carries 25 marks. You may attempt all questahonly marks for the
best TWO questions will be counted.

B1. The interstellar medium (ISM) has a neutral hydrogen corepbwhich can penetrate close
to the Sun, where it is ionized by UV radiation. Consider thation of a newly ionized
particle, of massn and charge, in the interplanetary electric and magnetic fields. This is
the so-called “pick-up” mechanism.

Use a coordinate system in which the magnetic fRld in theX direction, and the solar
wind velocity Vsy is in thex—y plane and makes an angteto B. You can assume that the
velocity of the neutral ISM relative to the Sun is negligilded thaB andVs,, are constant.

(a) [12 mark$ Starting from the Lorentz force, solve the particle’s eguas of motion to
find its velocity as a function of time. You may assume thaaidéHD applies for the
solar wind, and that the patrticle is ionized at the origihat0. You will need to find
the electric field based on the given magnetic field and saiad welocity.

(b) [4 markg Describe qualitatively the subsequent motion of the neasyzed particle.
(c) [4 markg What is the maximum and average kinetic energy of the iaharticle?
What might be the observational signatures of these pastcl

(d) [5 markg From your knowledge of the variation of the interplanetarggnetic field
(both large scale configuration and short term variations)raent on what you would
expect for (i) the evolution of the pick-up ion motion withstince, and (ii) the dif-
ferences in motion expected for particles ionized at dafférdistances and latitudes
relative to the Sun.

B2. A one-dimensional magnetic annihilation configurationhewsn below:
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All quantities are functions af only. Plasma flows in symmetrically from either side of the
z= 0 plane at a constant speédsubscript refers to input region). The oppositely dirdcte
fields, lying parallel/antiparallel to the axis in the inflow region, annihilate at= 0. Far

from thez = O plane the field strength B;. The magnetic field componenB = B, = 0
everywhere.

(a) [10 mark$ Assuming steady state, determine the governing equatidBfin the sys-
tem described above, and show that it is satisfied by the ssijore

Bx = +B; [1 — exp(FHo0Viz)]

where the upper/lower signs refer to the 0 andz < 0 regions, respectively.
(b) [2 markg Comment, briefly, why such a configuration is unrealistic.

(c) [7 markg Sketch the Sweet-Parker model of reconnection, showingsfiand repre-
sentative field lines.

(d) [6 markg For the Sweet-Parker model, by balancing the Poynting flix B) /1o in
the inflow region with the energy flux of the outflow plasma, wttbat the outflow
speedVy ~ v/ 2Vai, WhereV,; is the Alfvén speed in the inflow region. Assume the

plasma is incompressible with mass denpignd that ideal MHD is valid in the inflow
region.

B3. A simple model of the solar wind can be derived assuming tieasblar corona, described
as an isothermal gas obeying the ideal gas pressurp$a@nkgT, undergoes a steady-state,
spherically symmetric and purely radial expansion. Theswsity and number density
are related by = nm wheremis the mean mass of a particle. Neglect the magnetic field.

() [12 mark$ Show that the outflow spead, as a function of radius, is governed by:

y2_ 2keT)1dV _ 4keT GMo
m /V dr mr r2

Ensure that you state clearly any additional assumptionswyake.

(b) [6 markg Sketch the general forms of the two possible solutions efd@fuation for
V(r), marking the critical radiug; and the point at which the flow becomes supersonic.
Discuss which solution best approximates the real soladwin

(c) [4 markg The rotation of the sun causes the interplanetary magfielitto be wound
up into the Parker spiral configuration, since in a frame taiog with the Sun the
solar wind has an additional azimuthal sp&gd= —Qr. (Q is the angular velocity of
solar rotation.) In a spherically symmetric model, the &ozn flux condition implies

Ep_\ip_—Qr
BB V, \,
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By using Maxwell’s equations to determine the variationhef tadial componer; of
the field with radial distance, use the above relation tordates the radial dependence
of the azimuthal component.

(d) [3 markg Given that spacecraft in near-Earth orbits obsgBe~ |By| ~ 5nT on aver-
age, calculate the average strength of the 2 magnetic fieghonents expected to be
observed by the Galileo spacecraft at Jupiter. (Assumeltiyter is at 5AU from the
Sun, and that, is constant between the Earth and Jupiter.)

B4. For some high frequency phenomena a suitable model of a plesancold electron fluid
and a uniform background of ions at rest to ensure quasialéyt The governing equations
for the electron densitge, and velocityve are

on,
a—te+D (neVe) - 0
ov e

In addition to Maxwell’s equations, the charge density \gegibypq = e n —e n, where
n; is the ion (proton) density, anglthe electronic charge. The ion dengikyis uniform and
constant.

The waves of this system can be found by linearizing thesateans, so that each quantity
is written asQ = Qo + Q1, whereQq is the equilibrium value an@; is a small perturbation.

(a) [6 markg Produce linearized equations far- E, ne, andve in the electrostatic, zero
magnetic field approximation, i.eB = 0. You may assume that in equilibrium the
density is unifornme = n; = ng, and that the plasma is at rest.

(b) [10 mark$ Show thatng; obeys the equation for SHM. Give its frequency and phase
velocity. What property of the plasma may be determinedguirs mode?

(c) [3 mark§ By use of the plane wave ansafz= Qexgi(k - x — wt)], show that the
corresponding electric field disturbance is longitudimathis case.

(d) [6 markg For plane wave solutions, by considering the divergendd®®equation for
electron velocity, show that the properties of an elecatistvave (i.e., withB; = 0)
propagating parallel to the magnetic field are unchanget®wddition of a uniform,
constant background magnetic fidg.
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