UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Sc. B.Sc.(Econ)

Í

Astronomy 1B91: The Evolving Universe - An Overview

COURSE CODE	: ASTR1B91
UNIT VALUE	: 0.50
DATE	: 06MAY-04
TIME	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

04-C0078-3-50 © 2004 University College London

TURN OVER

Answer FOUR questions.

İ

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

 $3 \times 10^8 \text{ m s}^{-1}$ Velocity of light, c, = Constant in Wien's Law = 2.9×10^{-3} m K Hubble's constant, H_0 , = 70 km s⁻¹ Mpc⁻¹

- 1. Define the light gathering power, resolving power and magnification of a telescope. [5] Outline three advantages and three disadvantages of placing an observatory on the Moon. [7] State two basic characteristics of blackbody radiation which are important for astrophysical studies. [4] Using Wien's law, determine the most appropriate observational wave-bands for the study of stars with surface temperatures of 3000 K and 22000 K? [4]
- 2. Describe the spectral classification scheme for stars in terms of temperature and luminosity. What is the spectral type of the Sun? [9]

The two stars HD 149757 and HD 209100 have surface temperatures of 32000 K and 4400 K, respectively. If the stars have the same radii, determine the ratio of their luminosities. [3]

Describe the key evolutionary stages, after formation, of a star that has a neutron star as an end-state.

[8]

ASTR1B91/2004

TURN OVER

3.	. Describe in some detail the nuclear reactions that comprise the principal energy source in the core of the Sun.	[10]
	Determine the fraction of energy emitted per unit area by a sunspot of temperature 4500 K compared to the surrounding photosphere of temperature 5800 K.	[3]
	Outline the main phenomena observed in the Sun during its most active phases.	[7]
		·
4.	Explain what is meant by a 'standard candle' for distance determination. List 3 objects that may be used as standard candles.	[6]
	For the Milky Way Galaxy, outline the characteristics and content of its disk, bulge, nucleus and halo.	[10]
	The H_{α} emission line of a nearby galaxy is shifted from its laboratory wavelength of 656.3 nm to 662.0 nm. Calculate the distance to the galaxy.	[4]
5.	By considering the location of the Earth, contrast the Geocentric model with our modern cosmological perspective of structure in the Universe.	[12]
	Explain how observations of the redshift of galaxies and measurements of deu- terium support the Big Bang model.	[4]
×	What is meant by the critical density of the Universe?	[4]
6.	Outline the four basic processes which are dominant in shaping the surface features of terrestrial planets.	[10]
	Discuss the evidence for a sub-surface ocean of liquid water in Europa	[7]
	Jupiter has a very strong magnetic field. Briefly explain whether this is expected based on our understanding of the planet's internal structure.	[3]
	ASTR1B91/2004 END OF PAPER	

è

4

2

Ï,

l

Ξ÷

• 4.

2