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Useful relations:

• Gradient in polar coordinates ∇ = ∂
∂r r̂ + 1

r
∂
∂θ θ̂

• Velocity in polar coordinates ṙ = ṙ r̂ + rθ̇ θ̂
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Section A: Each question carries 5 marks . You should attempt ALL
five questions and give definitions where appropriate.

Question 1 Describe briefly (a few sentences) what is meant by

(a) Kepler’s laws of Planetary Motion

Question 2 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) The restricted three-body problem
(b) Lagrangian points

Question 3 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Tisserand’s Constant
(b) Hill Sphere

Question 4 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Zero velocity surfaces
(b) Tidal dissipation factor Q

Question 5 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Minimum Mass Nebula
(b) Planetary differentiation

c© Queen Mary, University of London (2009) TURN OVER



Page 4 ASTM001 (2009)

Section B: Each question carries 25 marks. There are 4 questions.
You may attempt all questions, but only marks for the best 3 ques-
tions will be counted.

Question 6 Two bodies with masses m1 and m2 move under their mutual gravi-
tational attraction. The equation of motion defining the variation of the position
vector r of the mass m2 with respect to the mass m1 is

r̈ + G(m1 + m2)
r
r3

= 0 ,

where G is the universal gravitational constant.

(a) Taking the vector product of r with the above equation and using the standard
result, ṙ = ṙ r̂ + rθ̇ θ̂, for motion in a polar coordinate system, show that r2θ̇ = h,
where h is a constant. [4]
(b) By taking the scalar product of the same equation of motion with the velocity
vector, ṙ, and integrating, show that

1
2
v2 − µ

r
= C

where v2 = ṙ · ṙ, and C is a constant of the motion. [5]

(c) In a polar coordinate system, the acceleration vector is given by

r̈ = (r̈ − rθ̇2) r̂ +
[1
r

d

dt

(
r2θ̇

)]
θ̂ .

Use the fact that the value of h defined in part (a) is a constant to show that this
equation of motion can be written as the scalar equation

r̈ − rθ̇2 = − µ

r2
,

where µ = G(m1 + m2). Use the substitution, u = 1/r, to derive expressions for ṙ
and r̈ in terms of u, θ and h and hence show that the equation of motion can be
written as

d2u

dθ2
+ u =

µ

h2
.

[8]

(d) Given that m2 is a comet and m1 is the Sun, so that m1 # m2 write down the
general solution to this differential equation. Given also that the comet is initially
projected with a velocity V from infinity towards the Sun on a hyperbolic orbit,
show that if it passes the Sun at its closest approach with velocity U when θ is
zero, then the path of the comet is given by

(
4µU2

(U2 − V 2)2

)
1
r

= 1 +
(

U2 + V 2

U2 − V 2

)

cos θ .

[8]
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Question 7 In the planar, circular restricted three-body problem the equations of
motion of the massless test particle in the frame rotating with unit angular velocity
are given by

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y
,

where the test particle has rectangular coordinates (x, y), in a frame where the x-axis
is directed along the line joining the two masses, and

U =
1
2

(
x2 + y2

)
+

µ1

r1
+

µ2

r2

with

µ1 = m1/ (m1 + m2) , µ2 = m2/ (m1 + m2) , µ1 + µ2 = 1,

and it is assumed that m2 < m1. The distances of the particle to the masses m1 and
m2 are given respectively by

r1 =
√

(x + µ2)2 + y2 and r2 =
√

(x− µ1)2 + y2.

The unit of distance is taken to be separation of the two masses.

(a) Show that

µ1r
2
1 + µ2r

2
2 = x2 + y2 + µ1µ2,

hence rewrite U in terms of r1 and r2 only. [6]
(b) State the conditions for determining the equilibrium points and hence deduce
that there are equilibrium points where r1 = r2 = 1. Find the x and y positions
of the equilibrium points and sketch their position. [9]
(c) An equilibrium point is located close to m2 but outside it beyond the line
joining the two masses such that r1 − r2 = 1. Using the new expression for U ,
show that this equilibrium point r2 must satisfy the equation.

µ2

µ1
=

3r3
2

(
1 + r2 + r2

2/3
)

(1 + r2)2
(
1− r3

2

)

[6]
(d) Given that m1 $ m2 and r2 # 1, find the approximate distance of the
equilibrium point.What does this distance represent? [4]
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Question 8 The tidal potential per unit mass experienced by a satellite of mass m
and semi-major axis a due to the tidal bulge it raises on a homogeneous planet of
radius R and mass M is

V = −k2G
m

a6
R5P2(cos θ) ,

where k2 is the Love number of the planet, G is the universal gravitational constant,
θ is the lag angle, and P2(θ) = 1

2(3 cos2 θ − 1) is the Legendre polynomial of degree
2.

(a) Show that the tangential component of the force, that is in the θ direction,
due to this potential is

F =
3
2
G

m2

a7
R5k2 sin 2θ .

Hence find the resulting torque on the satellite. [5]
(b) By considering the sum of the rotational energy of the planet and the orbital
energy of the satellite-planet system, show that the rate of change of energy is
given by

Ė = IΩΩ̇ +
1
2

(
Mm

M + m

)
n2aȧ,

where I is the moment of inertia of the planet, Ω is the rotational frequency of
the planet, and n is the mean motion of the satellite. [5]
(c) Use the conservation of the total angular momentum of the system and the
result from (b) to show that

Ė = −1
2

(
Mm

M + m

)
anȧ(Ω− n) .

[7]
(d) Given that Ė = Γ(Ω − n) < 0, use the results from (a), (b), and (c) to show
that if Q = 1/ sin 2θ is the tidal dissipation function of the planet and M $ m ,
then if m starts from a distance a0 it will impact M after a time

timpact =
2
39

(
MR13

G

) 1
2 Q

mR5

((
a0

R

) 13
2

− 1
)

.

[8]
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Question 9 (a) Show that for a sufficiently massive body of mass M and radius R,
where gravitational focussing is important that the mass accretion rate is

dM

dt
= ρπR2

(

1 +
(

vesc

vr

)2
)

vr,

where ρ is the mass density of the accreted material and vr is the relative velocity
with which the accreting material approaches M. [10]

(b) Consider the two cases

(i) vesc $ vr,

(ii) vesc # vr,

and discuss them in terms of the growth of M. [8]

(c) Given that the resulting planetary body has mass M and radius R and is
spherical with uniform density, show that the resulting gravitational binding energy
of the body is given by

E = −3
5

GM2

R
.

[7 ]

End of Paper
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