
Answer THREE questions

The numbers in square brackets in the right-hand margin indicate the pro-
visional allocation of maximum marks per sub-section of a question.

1. The zinc blende structure, adopted by semiconductors such as CdTe, is
related to that of the diamond structure. Diamond may be thought of as two
interpenetrating face centred cubic (fcc) structures displaced along the body
diagonal (i.e. [111] direction) by a quarter of a unit cell. In the zinc blende
structure one of the fcc lattices is populated with Cd (Z=48) and the other
with Te (Z=52).

(a) The unit cell structure factor F (Q) for the scattering of X-rays from
a single crystal may be written in the form

F (Q) =
∑

j

fj(Q)eiQ·rj .

Starting from the scattering amplitude for a distribution of electrons, outline
the derivation of this expression, and explain the terms on the right hand
side of the equation. [3]

(b) Using the conventional cubic cell draw cross-sections perpendicular to
the [001] direction through the structure of CdTe for z=0, 1

4
, 1

2
, 3

4
and 1, where

z is the fractional coordinate. Hence write down the (x, y, z) coordinates of
the 4 Cd and 4 Te atoms in the basis of the unit cell, and derive a general
expression for the unit cell structure factor. (Assume that Cd is in the z=0
layer.) [6]
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(c) The X-ray powder diffraction pattern from CdTe nanocrystals (cubic unit
cell parameter a=6.3 Å) is shown above for an X-ray wavelength of 1.54 Å.
Determine the Miller indices of the Bragg peaks found at scattering angles
of 2θ=24.6 and 40.0 degrees, and calculate their structure factors. Where
should the (200) Bragg peak appear, and why is it absent? [7]

(d) The relative width in Q of a Bragg peak is inversely proportional to
the size of the crystal. In one dimension it can be shown that the full width
at half maximum is to a good approximation proportional to 1/N , where N
is the number of unit cells. Estimate the size of the nanoparticles from the
data shown above. Explain the origin of the peak near the scattering angle
of 5◦, and use this to obtain an independent estimate of the diameter of the
nanoparticles. [4]
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2. A simple model of a polymer regards it as a freely jointed chain made up
of N links each of length a.

(a) If r is the vector connecting the ends of the polymer, show that the
root mean squared (r.m.s) end-to-end distance is given by [3]

< r2 >
1
2 = aN

1
2 .

(b) In the limit of large N , the probability distribution function P (r, N)
describing the distribution of possible end-to-end distances is Gaussian and
may be written as

P (r, N) =

(
3

2πNa2

) 3
2

exp

(
− 3r2

2Na2

)
.

Write down the configurational entropy S(r), and hence find an effective elas-
tic contribution to the free energy as a function of r and temperature. [3]

(c) In a real polymer chain the links are self avoiding which alters how

< r2 >
1
2 scales with N . By considering the polymer to be a gas of N molecules

occupying a volume of r3, show that the reduction in entropy due to excluded
volume effects leads to a repulsive contribution to the free energy of the form

F = kBTv
N2

r3
.

(You may use the fact that for a gas of volume V where each molecule
occupies a volume v the entropy per atom is reduced relative to the ideal gas
result by kBvN/V .) Hence show that in equilibrium the r.m.s end-to-end
distance of the self-avoiding chain scales as [6]

r ∼ aN
3
5 .

(d) By comparing the results in (a) and (c) discuss how excluded volume
effects alter the size of the chain, including a sketch of the dependence of the
excluded volume effects on N . [3]

(e) Up to this point we have assumed that the chain is freely jointed,
and have ignored polymer/solvent interactions. Describe how these may be
included in the theory, including a description of the physical consequences
of the Theta Condition. [5]
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3. The refractive index n for x-rays is less than unity and may be written as

n = 1− δ

with δ = (ρr0λ
2/2π) ¿ 1. Here ρ is the electron density, r0 is the Thomson

scattering length, λ is the X-ray wavelength, and we have neglected absorp-
tion. The fact that n is less than unity gives rise to the phenomenon of total
external reflection, which may be used to derive detailed information on the
nature of surfaces and interfaces. The geometry of a reflectivity experiment
is shown in the figure below, where ψI , ψR, ψT represent the incident, re-
flected and transmitted waves respectively.
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(a) By imposing the boundary conditions that the wave and its derivative
at the interface z=0 must be continuous derive the following two equations
relating to the amplitudes [2]

aI + aR = aT

aIkI + aRkR = aTkT .

(Note: The wavenumber in vacuum is denoted k=|kI |=|kR| and in the ma-
terial is nk = |kT |.)

(b) By considering the components of k parallel to the surface, solve the
equations derived in (a) to derive Snell’s law and show that in the small-angle
(reflectivity) limit it reduces to

α′2 = α2 − α2
c (1)

where αc=(2δ)
1
2 is the critical angle defined by the condition that α′=0. [4]
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(c) Derive expressions for the amplitude reflectivity r = aR/aI and trans-
mittivity t = aT /aI , in terms of α and α′. These are the Fresnel equations. [5]

(d) By considering solutions to equation (1) determine the behaviour of
the reflectivity for α ¿ αc, α À αc and for α = αc. Hence make a sketch of
the intensity reflectivity R = |r|2 as a function of incident angle α. [5]

(e) One important application of X-ray mirrors is as the first optical com-
ponent in the “white” beam produced by synchrotrons. The mirror is nor-
mally placed before the monochromator crystal which is typically a Si(111)
crystal. Explain why the mirror is necessary and how it works. [4]
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4. (a) Discuss how the arrangement of atoms in the glass, liquid and crys-
talline forms of matter differ. Particular attention should be given to de-
scribing both the structure and dynamics of the three phases, and the con-
sequences that they have for the measured physical properties. [7]

(b) Explain how you would measure the diffraction patterns from these
three phases using X-rays or neutrons, and describe the expected results by
drawing sketches of the scattered intensity versus the scattering vector. What
are the relative merits of neutron and X-ray scattering for the experiments
you propose. [7]

(c) Lindemann proposed in 1910 that a solid melts at a temperature when
the amplitude of atomic vibration exceeds a critical fraction α of the atomic
spacing. Assuming Lindemann’s theory to be correct, show that for a simple
cubic structure of lattice constant a, and where the atoms execute simple
harmonic motion, α is given by

α =

(
2kBTm

Ea3

) 1
2

.

Here E is Young’s modulus, defined as the ratio of stress to strain, and
kB is Boltzmann’s constant. You may make use of the fact that the mean
total energy of a simple harmonic oscillator is equal to kx2/2, where k is the
spring constant and x is the displacement. Estimate the value of α for Lead
for which Tm ≈ 600 K (Key data for Lead: E=1.60×1010 N m−2, density ρ
=11.3 x 103 kg m−3, the molar mass is M=0.207 kg, and the gas constant is
R=8.3 J mol−1 K−1). [6]
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5. The stretching vibrations of a polymer chain may be modelled as a linear
chain of identical masses m connected by springs of alternating spring con-
stants K1 and K2, as shown schematically for a length of chain in the figure
below.
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(a) By considering the forces show that the masses at positions n and
n− 1 on the chain obey the respective equations of motion:

mün = K1un+1 − (K1 + K2)un + K2un−1

mün−1 = K2un − (K1 + K2)un−1 + K1un−2

where un is the displacement of the nth mass. [2]

(b) Show that

un = A exp(i[kna/2− ωt])

un−1 = αA exp(i[k(n− 1)a/2− ωt])

represent solutions to the equations of motion, where α is a phase factor.
Derive two alternative expressions for α as a function of frequency ω and
wavenumber k. [5]

(c) Hence show that the characteristic frequencies of the chain are given
by

ω2 =
K1 + K2

m

[
1±

(
1− 4K1K2 sin2(ka/2)

(K1 + K2)2

) 1
2

]
.

[4]

(d) By considering solutions to the above equation in the limits that
k → 0 and k → ±π/a sketch the dispersion curves for the optic and acoustic
branches of the vibration spectrum. You may assume that K1 > K2. [6]

(e) Describe the form of the phonon dispersion curves displayed by three-
dimensional crystals, and explain how they may be determined experimen-
tally. [3]
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