BSc/MSci EXAMINATION

PHY-324 Foundations of Quantum Mechanics

Time Allowed:

2 hours 15 minutes

Date:

26-May-2005

Time:

10:00

Instructions:

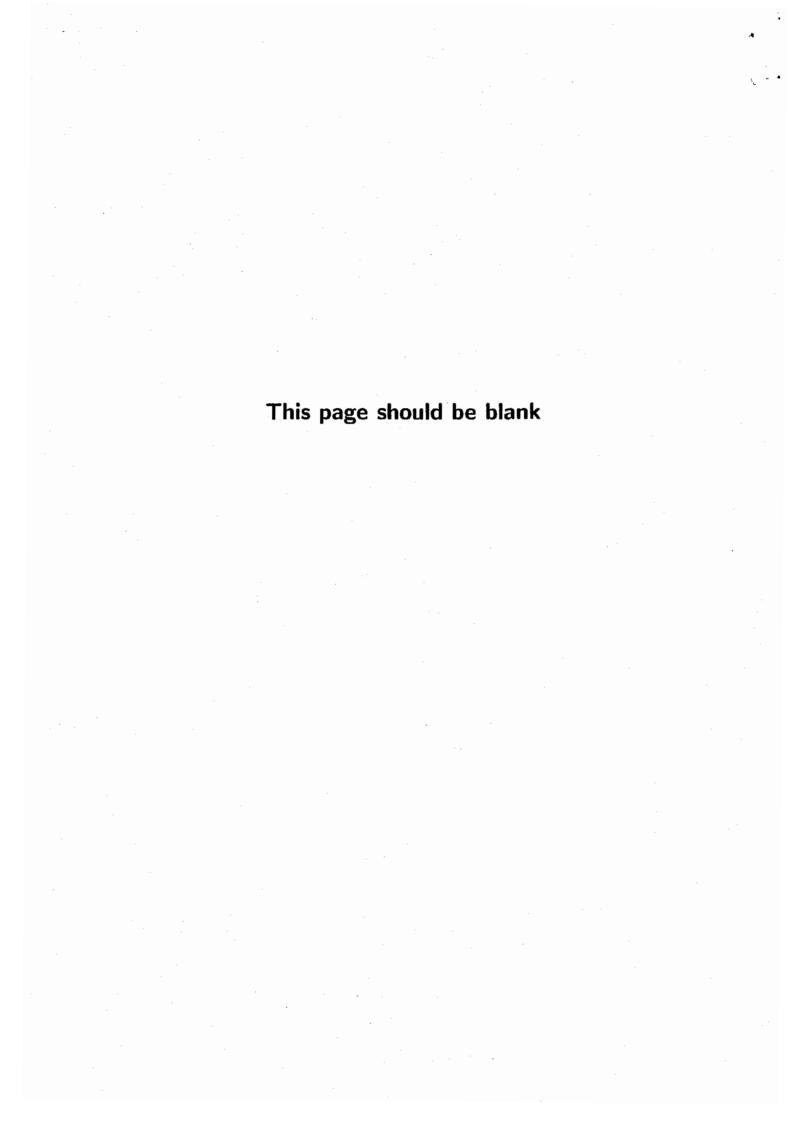
Answer THREE questions only. Each question carries

20 marks.

Data:

Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$



The spin operators for a spin half system are $S_i = \frac{\hbar}{2}\sigma_i$, with S_1, S_2, S_3 corresponding to spins along the x, y, z directions respectively.

- (a) What are the possible outcomes of a measurement of the spin along the x-axis? Derive the corresponding eigenvectors. [3 marks]
- (b) Consider a unit vector \hat{n} in the x-z plane, in a direction making an angle α with the z-axis. Write the x,y,z components of this vector. [3 marks]
- (c) Calculate the operator $\vec{S}.\hat{n}$. What are its eigenvalues and normalized eigenvectors ? [5 marks]
- (d) In a Stern Gerlach experiment, a beam of spin half silver atoms are in an eigenstate of S_z , with eigenvalue $\hbar/2$. They pass through an inhomogeneous magnetic field varying along the direction \hat{n} . The outcome is a pair of beams corresponding to the two allowed values of $\vec{S}.\hat{n}$. What is the ratio of the intensities of the two beams ? [6 marks]
- (e) Suppose the beam corresponding to the positive eigenvalue of $\vec{S}.\hat{n}$ above is passed through another Stern-Gerlach apparatus measuring the spin along the z-axis. What is the probability that the outgoing atoms have spin $\hbar/2$ along the z-axis ? [3 marks]

A spin 1/2 system is governed by the Hamiltonian

$$H = \omega S_z ,$$

where $S_z=\hbar rac{\sigma_3}{2}$, and μ is a constant.

- (a) Compute the energy eigenvalues of the system and the corresponding eigenvectors. [2 marks]
- (b) Suppose the system is initially in an eigenstate of S_y with eigenvalue $\hbar/2$ at time $t_0=0$. What is the normalized state of the system at a time t>0? [4 marks]
- (c) Calculate the expectation values of $\langle S_y \rangle$, $\langle S_x \rangle$ at a time t. [4 marks]
- (d) What is the first time t>0 when the system is in the same eigenstate it started with ? Explain how this result is consistent with your answer to part 3 above. [4 marks]
- (e) Calculate the dispersions $\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle (\langle S_x \rangle)^2$ and $\langle (\Delta S_y)^2 \rangle = \langle S_y^2 \rangle \langle S_y \rangle^2$ at time t > 0. Explain why your results are consistent with the uncertainty principle. [6 marks]

(
$$\mathit{Hint} : \langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} | \langle [A, B] \rangle |^2$$
)

A particle of mass m=1 is subject to the one-dimensional harmonic oscillator potential with frequency $\omega=1$, so that the system is governed by the Hamiltonian

 $H_0 = \frac{p^2}{2} + \frac{x^2}{2} \ .$

- (a). Derive the form of the Hamiltonian in terms of the creation operator $a^{\dagger} = \frac{x+ip}{\sqrt{2\hbar}}$ and the annihilation operator $a = \frac{x-ip}{\sqrt{2\hbar}}$ [4 marks]
- (b) The state vector at initial time $t_0 = 0$ is a linear combination of the ground state and the first excited state.

$$|\alpha, t_0 = 0> = \frac{1}{\sqrt{2}}(|0>+i|1>)$$

Calculate the state vector $|\alpha, t_0 = 0; t >$ of the system at a generic time t > 0. [5 marks]

- (c) Determine the expectation values $\langle t|x|t\rangle$ of the position operator at a generic time t>0. [4 marks]
- (d) Consider the system described by the Hamiltonian $H=H_0+V$, where H_0 is the original hamiltonian, and V is the small perturbing potential

$$V(x) = \beta x^4,$$

where β is a constant. Calculate the correction to the eigenvalue of the energy for the ground state, to the first order in the parameter β . [7 marks]

- (a) The pions π^+,π^-,π^0 form an irreducible representation of SU(2) isospin symmetry. What is the total isospin I of this set of particles ? What are the I_3 eigenvalues of these particles ? [4 marks]
- (b) The proton and neutron can be viewed as two states of the nucleon in an $I=\frac{1}{2}$ representation of isospin symmetry. They can be viewed as states $|I=\frac{1}{2},I_3=\frac{1}{2}>$ and $|I=\frac{1}{2},I_3=\frac{-1}{2}>$ respectively. A two-particle composite system made of proton and neutron can decomposed into eigenstates of total isospin, denoted $I^{(t)}$ and total $I_3^{(t)}$. Decompose states labelled by $I^{(t)}$ and $I_3^{(t)}$ in terms of $I^{(1)},I_3^{(1)}$ and $I^{(2)},I_3^{(2)}$ of particle 1 and 2 respectively. [8 marks]
- (c) The deuteron is in fact a composite particle of the type considered above with $I^{(t)}=I_3^{(t)}=0$. Explain using this information, and assuming isospin symmetry of the interactions, why the processes below

$$I: p+p \to d+\pi^+$$
$$II: p+n \to d+\pi^0$$

have the property that the ratio of their cross-sections $\frac{\sigma(II)}{\sigma(I)}$ is approximately $\frac{1}{2}$. [8 marks]

(a) Three particles have spins $\frac{1}{2}$, 1, 2 respectively. What are the allowed eigenvalues of $J_1^2 + J_2^2 + J_3^2$, where \vec{J} is the total angular momentum operator? For each eigenvalue, what is the multiplicity of states? [7 marks]

Hint The formulas j(j+1) for the Casimir and (2j+1) for the dimension of a spin j multiplet will be useful.

- **(b)** Express the commutation relations $[L_i, L_j] = i\epsilon_{ijk}L_k$ in terms of the diagonal operator L_3 and the ladder operators $L_{\pm} = L_1 \pm iL_2$. **[6 marks**]
- (c) Use the coordinate space realization $L_i = -i\epsilon_{ijk}x_j\partial_k$ to show that for $x_+ = x + iy$, $L_+(x_+) = 0$. Calculate $L_-(x_+)$, $L_-^2(x_+)$, $L_-^3(x_+)$. Calculate the action of the operator $L_1^2 + L_2^2 + L_3^2$ on x_+ and comment on the answer you got for $L_-^3(x_+)$ in the light of the representation of the angular momentum algebra that x_+ belongs to. [7 marks]