

BSc/MSci EXAMINATION

SEF - 006 Physics (Fields and Waves) PHY - 106 Principles of Fields and Waves

Time Allowed: 2 hours 15 minutes

Date: 26th May 2006

Time: 10:00

Section A: Answer all the questions. An indicative marking-scheme is shown in square brackets [] after each part of a question.

Total marks for this section is 24.

Section B: Answer three out of the four questions only. Each question is worth 12 marks. An indicative marking-scheme is shown in square brackets [] after each part of a question.

Total marks for this section is 36.

You may use an electronic calculator during this examination.

Data

Gravitational constant	G	6.7 x 10 ⁻¹¹	Nm ² kg ⁻²
Acceleration of free fall	g	9.8	m s ⁻²
Permeability of free space	μ ,	$4\pi \mathrm{x10^{-7}}$	Hm ⁻¹
Speed of sound in air	v	340	ms ⁻¹
Permittivity of free space	٤o	8.85×10^{-12}	$\mathrm{F}\mathrm{m}^{-1}$
Radius of the Earth	R _E	6.4×10^3	km

DO NOT TURN TO THE FIRST PAGE OF THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE INVIGILATOR.

SEF-006 Physics (Fields and Waves) PHY-106 Principles of Fields and Waves

.

THIS PAGE TO BE LEFT BLANK

©Queen Mary, University of London 2006

Page 2 of 5

Version 1

¥

SEF-006 Physics (Fields and Waves)

PHY-106 Principles of Fields and Waves

Section A - Answer all questions in this section

- A1) (a) State Faraday's law of induction and explain the significance of the negative sign. [2]
 - (b) An aircraft with a wing span of 40 m is flying due north, on a horizontal track, with a velocity of 140 ms⁻¹ in a region where the vertical component of the earth's magnetic field is 2.0 x 10⁻⁵ T. Calculate the emf induced between the wing tips of the aircraft. [2]
- A2) The sketch below shows a bar magnet placed on the magnetic meridian with its N-pole pointing towards magnetic north.

Copy the diagram and sketch the magnetic field for the region surrounding the magnet. [2]

Your diagram should indicate the relative strength of the field for the region and the positions of any neutral points. [2]

- A3) (a) State what is meant by "electric field strength at a point in an electric field".
 - (b) Two horizontal metal plates are separated by 20 cm of air. The lower plate is connected to earth and the upper one is connected to the positive terminal of a 20 kV dc supply. Calculate
 - (i) Calculate the electric field strength at the centre of the plates and [2]
 - (ii) Sketch the plates and add some "lines of electric force" to illustrate the field between the plates.
- A4) Sound is described as a longitudinal wave, requiring a medium.
 - (a) Draw a fully labelled diagram to illustrate how the direction of energy transfer is related to the direction of the vibration in the medium. [2]
 - (b) A sound wave of frequency 1000 Hz is transmitted through a copper rod. If the speed of sound in copper is 3800 ms⁻¹, calculate the wavelength of the sound wave.

The examination continues on the next page

[1]

[1]

SEF-006 Physics (Fields and Waves)

PHY-106 Principles of Fields and Waves

A5) (a) Derive an expression for the magnifying power of a telescope in normal adjustment. [2]

The diagram below shows the arrangement of lenses in a refracting telescope

- (c) Calculate the magnifying power
- A6) Sketch the em spectrum showing the positions of micro-waves, infra-red, ultra-violet, radio waves relative to the visible region. Explain why bodies at around room temperature readily absorb infra-red radiation. [4]

Section B - Choose three of the four questions in this section.

B1) (a)	State Newton's Universal Law of Gravitation.	
,	Write the law in equation form defining all terms.	[2]
		•

- (b) If the acceleration of free fall, g_m , at the surface of the moon is 1.7 ms⁻²
- (c) To what height would a signal rocket rise on the moon if an identical rocket would reach 200 m on earth.
 You may ignore the effects of air resistance.

B2) (a) Describe fully how a stationary wave differs from a plane progressive wave. Draw a diagram to show the positions of any nodes and antinodes for a closed pipe producing the fundamental frequency.
 [6]

- (b) Define the terms node and antinode [2]
- (c) Given that the distance between successive antinodes in a stationary wave is 20 cm, calculate the velocity of the wave if the frequency is 800 Hz.

The examination continues on the next page

[1]

B3)	(a)		ate the conditions necessary for a body to perform simple rmonic motion.	[2]	
	(b)	A 0.01 kg mass is suspended from a light spring of natural lengtl and produces an extension of 10 mm. The mass is then pulled further 5 mm and released. Calculate			
		(i)	the spring constant.	[3]	
		(ii)	the period of the motion.	[3]	
		(iii)	the velocity and kinetic energy of the mass as it passes through the centre of the motion.	[4]	
B4)	(a)	inte to c	scribe the experimental arrangement for the production of rference fringes by Young's two-slit method Derive a relationship alculate the fringe separation in terms of the slit-screen distance, wavelength of the light and the distance between the two slits	[6]	
	(b)		uch an experiment, the fringe width for light of wavelength 550 nm		

was found to be 0.24 mm. The source was then replaced by one which produced a wavelength of 440 nm. Calculate

- (i) the distance between the fringes for the new source and [4]
- (ii) describe and explain what would be seen on the screen if ONE of the slits was covered up. [2]

Mr J. Murphy

84. ;

ì

.