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1. In the dipole approximation for a scattering centre at the origin, the
electric and magnetic fields for the scattered radiation are given by

_ k2 eikr
ESC T 4mweg T

[(mnXp)xn+mxn/d,

BSC =n X Esc/C;

where p and m are the induced electric dipole and magnetic dipole
moments of the scatterer. If the incident wave is a plane wave given by

E:

— iko-x
1n —Eoe 0 ’

Bin =1y X Ein/c,

with ko = kng, the differential scattering cross-section may be written

as

do -y _ 7{[Sscl)
aa™™ = s

where S = E x B/ is the Poynting flux vector and the notation (- - -)
indicates time-averaging.

(a) Show that this reduces to

do k? )2 1

d—Q(n, ny) = (Fﬁo E—g[(n X p) X n+m X n/c]®>. [5 marks]

(b) Now consider a collection of identical dipole scattering centres,
located at the points x;. Show that the effect is to multiply the
cross-section for a single scatterer by the structure factor

Fla) =D _ewsP, 5 marks
J
where q = k(no — n).
(c) Show that for N scatterers F(0) = N?, and find an approximation
for F(q) for N >> 1 scatterers distributed at random, with a a

typical distance apart, for |qla >> 1. [5 marks|

(d) Explain what happens if the scatterers are spaced regularly, as for
example in a crystal. [5 marks]

please turn to the next page
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2. (a) Consider spherical coordinates (r, 6, ¢), and a vector field A with
components

g(1 — cosh)

Ar=0, Ay=0, 4= 47rsinf

Show that this potential gives a magnetic field

g9 .
B = .
arr2 "
[5 marks]
(b) Explain what this magnetic field describes. [3 marks]
(c) The Lorentz force law for the motion in this field of a particle of
electric charge e, rest mass m, velocity v =1 = % and momentum
p = y(v)mv gives
_egvXxr
P= s

Show that the quantities
egr
E = \/p%c® + m2c, J:’y(v)mrxv——g—,
dmr

are constants of the motion and explain what these invariants are
physically and what the separate terms in J represent. [8 marks]

(d) Consider the case where the particle in part (c) above is stationary.
Assuming that J has the properties of intrinsic angular momen-
tum, derive the quantisation condition

eg n
L =Zh  n=0,+1,+2,..
47 2

[4 marks]

please turn to the next page

(© Queen Mary, University of London 2006 Page 2 of 6



3. The vector potential A(x)e “? far from an oscillating magnetic dipole
me “! at the origin is given by

ikr
A= nxm.
A1
(a) Define k,r and n in this equation. [3 marks]
(b) What is the magnetic field B at a distance which is far from the
oscillating dipole? [5 marks]

(c) The Poynting vector S is given by
S = |B|’n.
Ho
Show that this reduces to

4
o w' 1 .
=M 53 3 m|%sin%0 n.
1672 3 r

What is the angle 6 in this expression? [5 marks]

(d) A neutron star rotates with angular rotation frequency w. It has
a magnetic dipole moment of magnitude m, but this is misaligned
with the axis of rotation by a constant angle o. Show that it
radiates energy at a rate

[7 marks]

please turn to the next page

(© Queen Mary, University of London 2006 Page 3 of 6



4. The Liénard-Wiechert potentials for the electromagnetic fields gener-
ated by a charge ¢ following a trajectory r = r(¢), with instantaneous

velocity u = % = ¢f, are
_q [ 1 1 ]
_47T€() Rl—ﬁ-n ret’
A Hotc [ﬁ 1 ] _
47 LR1— ﬂ - Il dret
(a) Explain the meaning of the notation [...], and define the dis-
tance R and the direction vector n. [4 marks]

(b) If |B] << 1, show that at large distances from the charge the
electric field is

__a !l :
Efar = P [R(n X (n x B)) i [6 marks]

(c) Assuming that the corresponding magnetic field is given by

Bfar = [Il X Efar]far /C,

show that at large distances, the Poynting energy-flux vector is

1
Star = —C|Efar|2n. [4 marks]

(d) Derive the Larmor formula

:g q2 1 -|2
34mey 3

for the total instantaneous power radiated by a non-relativistic
accelerated charge. [6 marks]

please turn to the next page
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5. (a) [3 marks] Show in the Lorentz gauge (0*A, = 0), with A* =
(%(I), A) and j* = (cp, J), that the Maxwell equation O*F},, = poj,
reduces to 1

OO, A = pod, 040,® = —p.

€o

(b) [4 marks| Integrate the equation for A above with [* e ®* to
obtain the Fourier transformed equation

(V2 + EHA(x,w) = —pod (x,w), (1)

with k% = w?/c%.

(c) [3 marks] Suppose that there exists a Green function Gg(x,x’),
satisfying
(V2 + k) Gr(x, %) = —4n83(x — x). (2)
Show that

Ax,w) = Z—O/Gk(x, x)J(x', w)d3x’
m
solves equation (1) above.

(d) [5 marks] Give an argument why G (x,x’) must be purely a func-
tion of r = |r| = |x — x|. Show that in this case equation (2)

becomes | 2
——— (rGy(r)) + K*Gi(r) = —4md*(r)

r dr?

and hence that when r # 0, G, (r) is given by
1, . .
Ge(r) = +(Ae™ + Be ™), (3)

for some constants A, B.

(e) [5> marks] A solution of Poisson’s equation V3¢ = —%p is ¢ =
= |fg,|d3r'. Use this fact to show that when r — 0, (3) above

remains a solution of equation (2) if

A+ B=1.

please turn to the next page
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Formula Sheet

x(bxc) =(a-c)b—(a-b)c,

V- (ya) =a-Vy+¢V.a,
V x (1pa) = (Vy) xa+9(V x a),
Vx(Vxa) =V(V-a)— Vi,
V(¥(r)) = ny/'(r).

Maxwell’s equations:
V-B=0, VxE=-2,
V.-D =p, Vtzj—i—Cf;a—]t).

For linear isotropic media:
1 1
D =¢E =¢E + P, H=-B=—B-M.
H Ho

CQdTZ = CZdIf2 — d$2 — dy2 — dZZ = dxanaﬂdxﬁ'

+1 ifa=p8=0
ﬂaﬂ:{—l ifa=06=1,2,3
0 ifa # 8
0 10 10
p— p— I‘L:
Ou Oz (cf)t V)’ 0 (8t V)'
O0aFP = 0,0°AP — 0°0, A% = 1yj”; Fb = 92AP — 9P A>.
OaFpy + 0sF,q + 0, Fup = 0.

0 —E'Ye —E?/c —FE3/c

1P = E')e 0 -B® B
~ | B2/ B3 0 -B
E3/c —-B* B! 0

In spherical coordinates (r, 0, ¢), with corresponding unit coordinate vectors
(t,6, ¢), for a vector field A with components (A,, Ag, Ay),

VxA=# ﬁ(a%(%sm@) 6A9) +8 (rsmﬂ 5 %%(TA“&))

+01 (E(TA") - ao’)

and for a scalar field G(r, 6, ¢)

1 0? 1 0 ( 8G) 1 092G

2
_1o 9 (gng?&), L 9G
VG =520+ maaas %0 ) T rante o

End of Examination Paper Prof WJ Spence



Answer 1

(a)

[6 marks] Since Eq. and Bg. are perpendicular, and similarily for
the incident electric and magnetic fields, one has |Ssc| = [Ege|?/cpio
and similarily for the incident flux. The time averaging factors
cancel in the ratio and the result follows.

[6 marks| The scatterer at x, experiences the incident field with
a phase factor differing from that at the origin by e’0*i. Its re-
sponse will therefore also acquire this phase factor. Likewise the
phase at the detector of the component scattered by this scat-
terer acquires a further factor e~*™*icompared with what would
have been received from a scatterer at the origin. So the phase
of the contribution to Egc is modified by an overall factor e*a™i,
so that the electric component of the scattered field is Zj el
times what was the case for a single scatterer at the origin. Since
the differential cross-section involves the square modulus of this,
the result is as given, namely to multiply the result for a single
scatterer by the structure factor.

[5 marks] For N scatterers, the sum gives directly that F(0) = N2.
For a large number of randomly-distributed scatterers, the phases
of off-diagonal terms in the sum (obtained from expanding out the
modulus squared) will cancel except close to the forward direction,
provided that |qla >> 1. Then F(q) ~ N.

[0 marks| In a crystal, there are peaks in the structure function
around ga = 0,27,4m, ..., ie when the Bragg condition is satis-
fied, and then F = N?%. The number of peaks is limited by the
maximum value which ga can attain, ga < 2ka, so that at long
wavelengths only the forward peak occurs. This has a width de-
termined by ¢ < 27/Na, corresponding to scattering angles less

than or of order \/L, where L is the linear size of the crystal.
sin?(Nqa/2)

Sn?(qa/2) this formula is not

(In each direction one finds F(q) =
required for full marks.)



Answer 2 (a) [b marks] We have

BoVUxAci 1 8(9(1—@089)) 9 .

rsinf 00 Ay = A2

where we have used the fact that r A, is independent of r for this
potential.

(b) [3 marks] This is the magnetic field for a magnetic monopole of
charge g, sited at the origin.

(c) [8 marks] Since

egmy(v)

o v-(vxr)=0

P'P=

using the cyclic identity for the triple product in the last step, it
follows that £ = 0. Secondly,

r-r

using the result 7 = £X.  E is the energy of the electrically
charged particle, and J is the angular momentum of the system,
the first term being the orbital angular momentum of the electri-
cally charged particle, and the second term the angular momen-
tum in the electromagnetic fields.

(d) [4 marks] When v = 0, then [J| = 72, and assuming that this

is quantised in half-integral units of % (as is the case for intrinsic
angular momentum), one derives the result.



Answer 3 (a) [3 marks] £ = w/¢, r is the vector from the dipole center to the
field point, and r = rn, with n a unit vector.

(b) [5 marks] We have

o eikr
B=VxA=Vx|—ik nxm).
A7 T

The leading term at large r is

k? 1o

Ho _
47rr?

A7y

(Vr) X (mx m) = (r x (n x m)).

(c) [5 marks] One has

4
How
16m2r2¢3

k‘4
S= SBPfn= 2 x (nxm)n=
0

p = 12,1 /m|*sin*f n,

where 6 is the angle between n and m.
(d) [7 marks] Here

E 4 in®
d :_/S.dA:_ How mZ/Sm 0 v25in0 do do,

dt 1672¢3 ¢ r2

where the surface integral is over the surface of a sphere which
contains the star, and m, = |m|sina is the length of the compo-
nent of the dipole moment which oscillates as e~™*. The surface
integral in the final expression in the equation above equals %”,

whence the result follows.



Answer 4 (a)

[4 marks| The retarded time is defined by the unique point to the
past of the field point z on the trajectory of the particle from
which an influence propagating at the speed of light reaches the
position x at the time ¢t = z°. The corresponding time r°/c on
the trajectory is called the retarded time, t,e, with ¢(t —t.e) = R.
R is the distance from field point to particle, R = |x —r(7p)|, with
Rn = x — (7).

[6 marks] Working to lowest order in 8 and 1/R,

Egr = _A -Ve

_ _Hoae S B p
4(117r R R?
= Treger @ An=0)

(where we take the expressions at the retarded time) giving the
required result.

[4 marks] We have

1
Sfar = _Efar X Bfar
Ho

but n - Eg,, = 0 whence the result follows.

[6 marks] The power radiated per unit solid angle is 4 = ﬁ | RE g |?.
. . . P qQ 1 292 .2
Inserting the expression for Eg,, gives 95 = Treo Trgs U sin 0,

where 6 is the angle between the direction of the field point and
the instantaneous acceleration u of the particle. Integrating this
over solid angles gives the required expression.



Answer 5 (a)

(b)

[3 marks| We have 0" F),, = 0*0,A, in Lorentz gauge, from which
it is straightforward to deduce the two equations.

[4 marks| This requires integrating the term involving % twice
by parts to bring down a factor of —w? from the exponential, and
dropping boundary terms assuming that the fields and their first
two time derivatives fall off to zero at infinity.

[3 marks] Here one pulls the d’Alembertian operator inside the
integral and acts with it on G. This generates a delta function
which is then integrated with J to give the required answer.

[6 marks|] The d’Alembertian operator is invariant under trans-
lations and spatial rotations, hence the function G must be a
function of the scalar r alone. When r # 0, the delta function
does not contribute and one has a standard second order ordinary
differential equation for rG, which is solved by an arbitrary linear
combination of the two exponentials.

[65 marks] When r — 0, then the 1/r term dominates on the left-
hand side and one has

1d? 5

;W(T‘G) = —4md (I‘)
This is Poisson’s equation if one identifies ® = Gi, and p =
47ed®(r). Using this in the given solution one finds that G = 1/r
and hence that one must have A + B = 1.



