Answer THREE questions

Mark Allocation

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Units, Masses and Other Values

The convention: $\hbar = c = 1$ will be used throughout this paper. The values for the following quantities may be assumed in this paper.

Meaning	Value
Masses of u,d,s,c,b,t quarks	1 MeV, 2 MeV, 0.2 GeV, 1.5 GeV, 4.5 GeV, 172 GeV
Masses of e, μ, τ leptons	0.5 MeV, 106 MeV, 1.8 GeV
Mass of all neutrinos	0
Mass of Z boson $(M_{\rm Z})$	$91 \mathrm{GeV}$
Mass of W boson $(M_{\rm W})$	$80 \mathrm{GeV}$
Fermi Weak Decay Constant $(G_{\rm F})$	$1.11 \times 10^{-5} \text{ GeV}^{-2}$

CKM Matrix

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} = \begin{pmatrix} 0.974 & 0.227 & 0.004 \\ 0.227 & 0.973 & 0.042 \\ 0.008 & 0.042 & 0.999 \end{pmatrix}$$

where V_{ij} is the factor for interactions involving quarks *i* and *j*.

Dirac Matrices

The Dirac γ matrices satisfy $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$ (for $\mu, \nu = 0, 1, 2, 3$) are defined as:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i=1,2,3} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

And the Pauli spin matrices, σ_i , are:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c}) = \vec{a} \cdot \vec{c} + i\vec{\sigma} \cdot (\vec{a} \times \vec{c})$ for 3 component vectors \vec{a}, \vec{c} .

PHASM442/2010

PLEASE TURN OVER

[7]

[5]

[3]

1. (a) Draw the highest rate, lowest order Feynman diagram for an electron scattering from an up-quark which produces an electron-neutrino ν_e in the final state.

Write down the factors at each interaction vertex in terms of the coupling constant, Dirac γ matrices and elements of the CKM matrix.

(b) Neglecting the mass of the electron and the ν_e show that if q is the difference in 4-momentum between the electron and the ν_e that:

$$Q^2 = -q^2 = 4E_e E_\nu \sin^2 \frac{\theta}{2}$$

where E_e and E_{ν} are the energy of the electron and ν_e respectively and the ν_e emerges at an angle of θ with respect to the original electron direction.

- (c) For $Q^2 = 10 \text{ GeV}^2$, neglecting the coupling constants, estimate the ratio of up-quark electron interactions producing a ν_e in the final-state to up-quark electron interactions producing an electron in the final-state.
- (d) Estimate what fraction of positron proton collisions at $\sqrt{s} = 300 \text{ GeV}$, $Q^2 = 10 \text{ GeV}^2$ and x = 0.33 will produce a charm quark and a $\overline{\nu}_e$ in the final state, where x is the fraction of the proton's 4-momentum carried by the struck quark. You should consider only up and down quarks and their anti-quarks in the initial proton.

[5]

PHASM442/2010

CONTINUED

[2]

[3]

[3]

[4]

2. The Lagrangian density of QED is:

$$\mathcal{L}_{\text{QED}} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi + e \bar{\psi} \gamma_{\mu} A^{\mu} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

- (a) If A^{μ} undergoes a gauge transformation of the form $A^{\mu} \to A^{\mu} + \partial^{\mu} \chi$ show that $F^{\mu\nu}$ is unchanged. [3]
- (b) Show that \mathcal{L}_{QED} is not invariant when ψ undergoes a local phase transformation of the form $\psi \to \psi e^{ie\theta}$ where θ depends on position. [5]
- (c) What values does χ have to take in order to restore the invariance of \mathcal{L}_{QED} under a local phase transformation?

Considering the production of a Higgs boson of mass 120 GeV from a pp collision at the LHC.

- (d) Draw the dominant Feynman diagram producing such a Higgs boson in association with a $t\bar{t}$ pair.
- (e) Draw the Feynman diagram illustrating the dominant decay modes of the Higgs boson and the *t*-quarks and \bar{t} -quarks. Considering only these decays, how many *b*-quarks and \bar{b} -quarks are expected in the final state?
- (f) Experimentally how would one detect a *b*-quark and determine its lifetime in its own rest-frame?

PHASM442/2010

PLEASE TURN OVER

[4]

[2]

[3]

3. (a) The Lagrangian density of QCD is:

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi - g_s \bar{\psi} \gamma^{\mu} \mathbf{G}_{\mu} \psi - \frac{1}{4} \sum_{a=1}^{8} G^a_{\mu\nu} G^{a\mu\nu}.$$

Explain using Feynman diagrams what the three terms in the expression for \mathcal{L}_{QCD} correspond to physically.

- (b) Give three pieces of experimental evidence that support the existence of the QCD property of colour. [3]
- (c) Explain what is meant by the procedure of renormalisation and the problem it solves.
- (d) Draw the two simplest Feynman diagrams that are responsible for screening and anti-screening the quark colour charge and hence explain the differing momentum-transfer dependence of the EM and QCD coupling constants.
- (e) For e^+e^- collisions at $\sqrt{s} = 5$ GeV, estimate the ratio of the rates at which interactions produce hadrons and $\mu^+\mu^-$. [4]
- (f) How would one expect the ratio of the rates at which interactions produce hadrons and $\mu^+\mu^-$ to change if the e^+e^- collisions were at $\sqrt{s} = 90$ GeV? [4]

PHASM442/2010

CONTINUED

[4]

 $[\mathbf{2}]$

[4]

- 4. (a) Draw the Feynman diagrams showing the dominant leptonic decay mode of the μ⁻ and the τ⁻.
 Assuming m_τ ≫ m_μ ≫ m_e, estimate the ratio of the rate of the two decay modes.
 - (b) Draw the Feynman diagram producing a τ^- from an interaction of a ν_{τ} and an electron.
 - (c) What is the minimum energy of the ν_{τ} incident on a stationary electron required to produce a τ^{-} in the limit that the outgoing neutrino energy, E_{ν} , is zero?
 - (d) Consider the decay $\pi^- \to \mu^- \overline{\nu}_{\mu}$, where the μ^- and $\overline{\nu}_{\mu}$ both emerge at an angle of 30⁰ with respect to the original π^- direction. If the π^- has an energy defined by a Lorentz γ factor of $\sqrt{3}$, show that the minimum energy of the $\overline{\nu}_{\mu}$, E_{ν} , is given by:

$$E_{\nu} = \frac{1}{\sqrt{3}} \left(m_{\pi} - m_{\mu} \right),$$

where m_{π} and m_{μ} are the rest-masses of the π^- and μ^- respectively. [7]

(e) Draw a diagram illustrating the spin and momentum vectors of the μ^- and $\overline{\nu}_{\mu}$ from the decay of a π^- at rest. Explain briefly why this decay mode is preferred over the decay $\pi^- \to e^- \overline{\nu}_e$. [3]

PLEASE TURN OVER

[Part marks]

- 5. (a) Show that $(\gamma^{\mu})^{\dagger} = g_{\mu\nu}\gamma^{\nu}$ and hence that $(\gamma^{\mu})^{\dagger}\gamma^{0} = \gamma^{0}\gamma^{\mu}$. [5]
 - (b) By taking the Hermitian conjugate of the Dirac equation: $(i\gamma^{\mu}\partial_{\mu} m)u = 0$ and multiplying by γ^{0} and using the result of part (a), show that the adjoint Dirac equation is:

$$\overline{u}\left(i\gamma^{\mu}\partial_{\mu}+m\right)=0.$$

(c) Consider the solution to the Dirac equation, u_A , defined as:

$$u_A = \sqrt{|E| + m} \left(\begin{array}{c} \chi_A \\ \left(\frac{\vec{\sigma} \cdot \vec{p}}{E + m} \right) \chi_A \end{array} \right) \quad \text{where } \chi_A = \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

and show that $u_A^{\dagger}u_A = 2E$.

(d) By considering u_A in the massless limit and the helicity operator, \hat{h} , defined as:

$$\hat{h} = \frac{1}{2} \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0\\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix},$$

show that

$$\hat{h}u_A = \frac{1}{2}\gamma^5 u_A$$

and briefly explain the significance of this result.

PHASM442/2010

END OF PAPER

[6]

[4]

[5]