Answer THREE questions

Mark Allocation

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Masses and Other Values

The following symbols may be used in this paper. The following values for these quantities may be assumed for this paper.

Meaning	Symbol	Value
Mass of u quark	$m_{ m u}$	1 MeV
Mass of d quark	$m_{ m d}$	$2 { m MeV}$
Mass of s quark	$m_{ m s}$	$0.2~{ m GeV}$
Mass of c quark	$m_{ m c}$	$1.5 \mathrm{GeV}$
Mass of b quark	$m_{ m b}$	$4.5 \mathrm{GeV}$
Mass of t quark	$m_{ m t}$	$172 { m ~GeV}$
Mass of all neutrinos	$m_{ u}$	0
Mass of Z boson	$M_{\rm z}$	$91 { m GeV}$
Mass of W boson	$M_{\rm w}$	$80 { m GeV}$
Width of Z boson	$\Gamma_{\mathbf{z}}$	$2.5 \mathrm{GeV}$
Weinberg Angle	$\theta_{ m w}$	28.66°
Speed of Light	c	$3 \times 10^8 \mathrm{\ ms^{-1}}$
Fermi Weak Decay Constant	$G_{ m F}$	$1.11 \times 10^{-5} { m GeV}^{-2}$
EM Coupling	$\alpha = e^2/(4\pi)$	1/137

Dirac Matrices

The Dirac γ matrices satisfy $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$ (for $\mu, \nu = 0, 1, 2, 3$) are defined as:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i=1,2,3} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

And the Pauli spin matrices, σ_i , are:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c}) = \vec{a} \cdot \vec{c} + i\vec{\sigma} \cdot (\vec{a} \times \vec{c})$ for 3 component vectors \vec{a}, \vec{c} .

Lorentz Transformation

$$\left(\begin{array}{c} x'\\t'\end{array}\right) = \left(\begin{array}{cc} \gamma & -\beta\gamma\\ -\beta\gamma & \gamma\end{array}\right) \left(\begin{array}{c} x\\t\end{array}\right)$$

PHASM442/2009

PLEASE TURN OVER

[7]

[3]

[5]

[5]

1. The CKM unitary matrix gives the flavour-dependent relative couplings for the charged-current weak interactions for quarks and has the following elements:

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} = \begin{pmatrix} 0.974 & 0.227 & 0.004 \\ 0.227 & 0.973 & 0.042 \\ 0.008 & 0.042 & 0.999 \end{pmatrix}$$

where V_{ij} is the factor for interactions involving quarks *i* and *j*.

- (a) Draw Feynman diagrams for the decays: $B^+ \to \pi^0 e^+ \nu_e$ and $B^+ \to \overline{D}^0 e^+ \nu_e$. Ignoring phase space and form-factors, estimate the ratio of the partial widths of these two decay modes.
- (b) Ignoring phase space and form-factors, estimate the ratio of the partial widths for the two decays: $B^+ \to \overline{D}^0 e^+ \nu_e$ and $B^+ \to \overline{D}^0 \pi^+$.
- (c) In low-energy, semi-leptonic, weak-decays of B(D)-mesons, containing a single b(c)-quark, such as the decays in part (a), the relevant energy scale is set by the mass of the meson, M_X . Show, using dimensional arguments, that the semi-leptonic decay rate (Γ) of such mesons, is proportional to M_X^5 .
- (d) The branching ratio for the decays, $B^+ \to \overline{D}^0 e^+ \nu_e$ and $\overline{D}^0 \to K^+ e^- \overline{\nu}_e$ are 6.5% and 3.6% respectively. Considering these decays and neglecting form-factors and phase space, show that the lifetime ratio of B^+ to \overline{D}^0 mesons, $\frac{\tau(B^+)}{\tau(\overline{D}^0)}$, is expected to be approximately 4.

The quark content of the B^+ meson is $u\overline{b}$, that of the \overline{D}^0 meson is $\overline{c}u$, that of the K^+ is $\overline{s}u$, that of the π^+ is $u\overline{d}$ and the π^0 is $\overline{u}u$ or $\overline{d}d$.

PHASM442/2009

CONTINUED

[Part marks]

2. (a) Given $\hat{H}\psi = i\frac{d\psi}{dt}$ and the Dirac equation $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$. Show that the Dirac Hamiltonian, \hat{H}_D , is given by,

$$\hat{H}_D = -i\gamma^0 \left(\vec{\gamma} \cdot \vec{\nabla}\right) \psi + \gamma^0 m$$

and hence that:

$$\hat{H}_D = \begin{pmatrix} m & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -m \end{pmatrix}.$$
[5]

- (b) $Y = \overline{u}(a)Xu(b)$, where X is a 4×4 matrix, u(b) is a Dirac spinor and $\overline{u}(a)$ is an adjoint Dirac spinor ($\overline{u} = u^{\dagger}\gamma^{0}$) for fermions b and a respectively. Show, by considering the dimensions of the matrices, that Y is a 1×1 matrix and hence that $Y^{*} = Y^{\dagger}$. [5]
- (c) Show, without using explicit matrix representations, that:

$$Y^* = \overline{u}(b)\gamma^0 X^{\dagger}\gamma^0 u(a).$$

[5]

[5]

(d) Show that $\gamma^0(\gamma^\mu)^{\dagger}\gamma^0 = \gamma^\mu$ for $\mu = 0, 1, 2, 3$.

PHASM442/2009

PLEASE TURN OVER

[Part marks]

- 3. (a) Draw the Feynman diagram for the scattering process: $\nu_{\mu}e^{-} \rightarrow \nu_{e}\mu^{-}$. [2]
 - (b) In the laboratory frame the e^- is at rest and the ν_{μ} has an energy, E_{ν} . Determine an expression for the total energy, \sqrt{s} , in the centre-of-mass (CM) frame, in terms of m_e and E_{ν} , where m_e is the rest mass of the electron. You should assume that $m_{\nu} = 0$ and $E_{\nu} \gg m_{\mu}$.
 - (c) The velocity, β , of the CM frame with respect to the laboratory frame is defined by $\beta = \sum \vec{p}_{\text{LAB}} / \sum E_{\text{LAB}}$, where $\sum \vec{p}_{\text{LAB}}$ and $\sum E_{\text{LAB}}$ are the total momenta and energy in the laboratory frame respectively. Show that the Lorentz boost, γ , of the CM frame with respect to the laboratory frame is approximately $\sqrt{\frac{E_{\nu}}{2m_{e}}}$.
 - (d) By considering a Lorentz transformation between the CM and laboratory frames defined by $\beta = 1$, $\gamma = \sqrt{\frac{E_{\nu}}{2m_e}}$, show that the maximum angle (in the laboratory frame), θ_{MAX} , that the μ^- can have with respect to the ν_{μ} direction in the laboratory frame is given by:

$$\tan \theta_{\rm MAX} = \sqrt{\frac{2m_e}{E_\nu}},$$

in the limit that the muon mass can be neglected.

(e) Experimentally, how would one determine the energy of a muon with energy $\approx 10 \text{ GeV}$ and distinguish it from an electron? [3]

PHASM442/2009

CONTINUED

[5]

[4]

[6]

[3]

[2]

[4]

[3]

[3]

4. (a) The Lagrangian density of QED is:

$$\mathcal{L}_{\text{QED}} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi + e \bar{\psi} \gamma_{\mu} A^{\mu} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$. Explain with reference to Feynman diagrams what the three terms in the expression for \mathcal{L}_{QED} correspond to physically.

- (b) Show that \mathcal{L}_{QED} is not invariant when ψ undergoes a local phase transformation of the form $\psi \to \psi e^{ie\theta}$ where θ depends on position. [5]
- (c) Derive a transformation rule for A_{μ} that restores the invariance of \mathcal{L}_{QED} under such a local phase transformation.
- (d) Based on the limits from direct searches and the precision measurements of the W boson and top quark masses and assuming the Higgs mechanism is responsible for electroweak symmetry breaking, what is the approximate upper (at 95% confidence) and lower mass limit of the Higgs boson ?In the absence of a Higgs signal at the LHC, illustrate with a Feynman diagram what other measurement at the LHC can be used to clarify the mechanism of electroweak symmetry breaking.
- (e) For a Higgs boson of mass 115 GeV, draw the dominant Feynman diagram for Higgs boson production and decay in proton proton collisions at $\sqrt{s} = 14$ TeV at the LHC.
- (f) Draw a Feynman diagram for a process that will occur at a far greater rate than the Higgs process in part (e) but will result in the same final state particles. Explain briefly why the rate is so much higher.

PHASM442/2009

PLEASE TURN OVER

[7]

[4]

[3]

- 5. (a) Draw the Feynman diagram for neutron decay, $n \to p \ e^- \overline{\nu}_e$. Write down the vertex factors in terms of the weak coupling, g_W , and the Dirac γ matrices. [6]
 - (b) The left-handed state of a particle, u_L , is defined by the projection: $u_L = \frac{1}{2}(1 - \gamma^5)u$ and the adjoint projection by $\overline{u}_L = \overline{u}\frac{1}{2}(1 + \gamma^5)$. Show that $\left[\frac{1}{2}(1 - \gamma^5)\right]^2 = \frac{1}{2}(1 - \gamma^5)$ and hence that $\overline{u}\gamma^{\mu}\frac{1}{2}(1 - \gamma^5)u = \overline{u}_L\gamma^{\mu}u_L$ and interpret the significance of this latter result in the context of neutron decay.
 - (c) Draw the dominant Feynman diagram producing $c\overline{c}$ or $b\overline{b}$ in e^+e^- collisions at $\sqrt{s} = 30$ GeV. At leading order, neglecting phase-space, what is the value of $R_{c/b}$? $R_{c/b}$ is defined as: $\sigma(e^+e^- \rightarrow c\overline{c})$

$$R_{c/b} = \frac{\sigma(e^+e^- \to cc)}{\sigma(e^+e^- \to b\overline{b})}.$$

(d) In approximately what fraction of interactions producing a $b\bar{b}$ would one expect the $b\bar{b}$ to have an additional associated hadronic jet? Experimentally how would one distinguish between this additional hadronic jet and the particles associated with the $b\bar{b}$ system?

PHASM442/2009