Answer FOUR questions

Mark Allocation

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Masses and Other Values

The following symbols may be used in this paper. The following values for these quantities may be assumed for this paper.

Meaning	Symbol	Value
Mass of u quark	$m_{ m u}$	1 MeV
Mass of d quark	$m_{ m d}$	$2 { m MeV}$
Mass of s quark	$m_{ m s}$	$0.2~{\rm GeV}$
Mass of c quark	$m_{ m c}$	$1.5 \mathrm{GeV}$
Mass of b quark	$m_{ m b}$	$4.5~{\rm GeV}$
Mass of t quark	$m_{ m t}$	$172 {\rm GeV}$
Mass of all neutrinos	$m_{ u}$	0
Mass of Z boson	$M_{\rm z}$	$91~{\rm GeV}$
Mass of W boson	$M_{\rm w}$	$80 {\rm GeV}$
Width of Z boson	$\Gamma_{\mathbf{z}}$	$2.5~{\rm GeV}$
Weinberg Angle	$\theta_{ m w}$	28.66^{0}
Speed of Light	С	$3 \times 10^8 \mathrm{\ ms^{-1}}$
Fermi Weak Decay Constant	$G_{\rm F}$	$1.11 \times 10^{-5} \text{ GeV}^{-2}$
EM Coupling	$\alpha = e^2/(4\pi)$	1/137

Dirac Matrices

The Dirac γ matrices satisfy $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$ (for $\mu, \nu = 0, 1, 2, 3$) are defined as:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i=1,2,3} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

And the Pauli spin matrices, σ_i , are:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c}) = \vec{a} \cdot \vec{c} + i\vec{\sigma} \cdot (\vec{a} \times \vec{c})$ for 3 component vectors \vec{a}, \vec{c} .

Cross Sections & Natural Units

 $1 \text{ barn} = 10^{-28} \text{ m}^2$ In natural units $1 \text{ m} = 5.068 \times 10^{15} \text{ GeV}^{-1}$.

PHASG442/2008

PLEASE TURN OVER

[Part marks]

[2]

- 1. (a) Draw the Feynman diagram for the decay: $\pi^+ \to e^+ \nu_e$. [3]
 - (b) Define helicity and explain why, for a massive particle, it is not a Lorentz invariant quantity.
 - (c) The E > 0 spinor solution, ψ , to the Dirac equation is:

$$\psi = \begin{pmatrix} \chi \\ \begin{pmatrix} \vec{\sigma} \cdot \vec{p} \\ E+m \end{pmatrix} \chi \end{pmatrix} \text{ where } \chi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Show that a massless fermion, with spinor, ψ , satisfies:

$$\gamma_5 \psi = \left(\begin{array}{cc} \vec{\sigma} \cdot \hat{p} & 0\\ 0 & \vec{\sigma} \cdot \hat{p} \end{array}\right) \psi$$

where $\hat{p} = \vec{p} / |\vec{p}|$

- (d) What chiral states of particles and anti-particles participate in the weak interaction? Write an expression for the left-handed chiral eigenstate of a particle in terms of the helicity eigenstates and the particle's velocity, β .
- (e) Consider the decay: $\pi^+ \to l^+ \nu_l$ in the rest frame of the π^+ . Show that the velocity, $\beta_l = p_l/E_l$, of the charged lepton, where p_l and E_l are the charged lepton's momentum and energy respectively, in this frame satisfies:

$$1 - \beta_l = \frac{2m_l^2}{m_{\pi}^2 + m_l^2}$$

[6]

(f) Hence, explain briefly why the rate of the decay $\pi^+ \to \mu^+ \nu_{\mu}$ far exceeds that of $\pi^+ \to e^+ \nu_e$. [2]

CONTINUED

[4]

[3]

- 2. The Higgs mechanism allows gauge bosons to have mass without violating local gauge invariance.
 - (a) The Lagrangian density for a photon with mass m_{γ} would be:

$$\mathcal{L}_{\gamma} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{\gamma}^2 A_{\mu} A^{\mu}$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$. Show explicitly that \mathcal{L}_{γ} in not invariant under a global gauge transformation:

$$A^{\mu} \to A^{\mu} + \partial^{\mu} \Lambda$$

unless $m_{\gamma} = 0$.

- (b) Draw the Feynman diagram that has the highest cross section for the production and subsequent decay of a Higgs boson of mass 180 GeV at the LHC proton-proton collider. You need not consider any hadronisation processes.
- (c) Draw a Feynman diagram for a process that will occur at a far greater rate than the above Higgs process but will result in the same final state particles. Explain briefly why the rate is so much higher.
- (d) Draw the Feynman diagram with the largest cross section for the production of a Higgs boson of mass 100 GeV from an e^+e^- collision at $\sqrt{s} \sim 200$ GeV. For this process and considering an e^+e^- collider with counter-circling beams, each with energy E colliding head-on, what is the minimum value of E required to produce a Higgs boson of mass 100 GeV? You may ignore the finite decay width of the Z boson.
- (e) For e^+e^- collisions at $\sqrt{s} = 300$ GeV, show that the energy, E_H , of a $(m_H = 150 \text{ GeV})$ Higgs boson produced via the process of part (d) is given by:

$$E_H = \frac{s + m_H^2 - m_Z^2}{2\sqrt{s}},$$

where m_Z is the mass of the Z boson.

PLEASE TURN OVER

PHASG442/2008

3

[3]

[5]

[3]

[4]

[5]

[6]

[2]

3. The CKM unitary matrix gives the flavour-dependent relative couplings for the charged-current weak interactions for quarks and has the following elements:

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} = \begin{pmatrix} 0.974 & 0.227 & 0.004 \\ 0.227 & 0.973 & 0.042 \\ 0.008 & 0.042 & 0.999 \end{pmatrix}$$

where V_{ij} is the factor for interactions involving quarks *i* and *j*.

- (a) Draw Feynman diagrams for the decays: $B_S \to \pi^+ K^-$ and $B_S \to \pi^+ D_S^-$. Ignoring phase space and form-factors, estimate the ratio of partial widths of these two decay modes.
- (b) Draw a Feynman containing a $\tau^+ + \nu_{\tau}$ in the final state from a proton-proton collision at the LHC.
- (c) What fraction of on-shell W^+ decays at the LHC will result in a τ^+ ? Explain how this fraction would change if off-shell W^+ decays where $(P_W^{\mu})^2 > 500 \text{ GeV}^2$ were considered, where P_W^{μ} is the 4-vector of the W^+ . [7]
- (d) Draw the Feynman diagram for the decay: $\tau^+ \to \pi^+ \pi^0 \pi^0 \overline{\nu_{\tau}}$. Experimentally how would one identify the π^0 decay products and reconstruct the π^0 mass? [5]

The quark content of B_S is $s\overline{b}$, D_S^- is $\overline{c}s$, K^- is $\overline{u}s$.

PHASG442/2008

CONTINUED

[3]

[5]

[3]

- 4. (a) Discuss briefly what is meant by the procedure of renormalisation. What problem does it overcome ?
 - (b) The QCD coupling constant, α_s , varies with energy, Q, as follows:

$$\alpha_s(Q^2) = \frac{A}{\ln \frac{Q^2}{\Lambda^2}} \quad \text{where} \quad A = \frac{12\pi}{11n_c - 2n_f},$$

where n_c is the number of colours, n_f is the number of quark flavours and Λ is a fixed energy scale where $\Lambda^2 \ll Q^2$.

With reference to appropriate Feynman diagrams, and to n_c and n_f , explain qualitatively the running of the QCD coupling constant.

- (c) Give two pieces of experimental evidence that can be used to determine n_c . What experimental measurement can be used to determine the number of light neutrino flavours?
- (d) For a particle, the left handed state is defined by the projection: $u_L = \frac{1}{2}(1-\gamma^5)u$ and the right handed by $u_R = \frac{1}{2}(1+\gamma^5)u$. Show that $\overline{u}_L = \overline{u}\frac{1}{2}(1+\gamma^5)$ [5]
- (e) Hence show that $\overline{u}_L \gamma^{\mu} u_R = 0$ and interpret the physical significance of this result for EM interactions. [4]

PLEASE TURN OVER

[Part marks]

[3]

- 5. The KEK accelerator produces head-on collisions between 8 GeV e^- and 3.5 GeV e^+ .
 - (a) What is the centre-of-mass energy, \sqrt{s} , of these collisions ?
 - (b) The leading order cross section for the process $e^+e^- \rightarrow b\bar{b}$ is given by:

$$\frac{d\sigma(e^+e^- \to b\bar{b})}{d\Omega} = \frac{1}{3} \frac{d\sigma(e^+e^- \to \mu^+\mu^-)}{d\Omega},$$

where
$$\frac{d\sigma(e^+e^- \to \mu^+\mu^-)}{d\Omega} = \frac{e^4\left(1 + \cos^2\theta\right)}{64\pi^2}$$

Draw the highest cross section, lowest order Feynman diagram for $e^+e^- \rightarrow b\bar{b}$. Justify the above factor of $\frac{1}{3}$ and explain why the cross sections are proportional to e^4 .

(c) Neglecting mass effects, explain, with reference to appropriate leading-order Feynman diagrams, why, at leading order, one expects:

$$\frac{d\sigma(e^+e^- \to \mu^+\mu^-)}{d\Omega} \neq \frac{d\sigma(e^+e^- \to e^+e^-)}{d\Omega}.$$

Which cross section should be larger?

- (d) Estimate, with reference to the propagator, the ratio of the weak neutral current cross section to the electromagnetic one for $e^+e^- \rightarrow b\bar{b}$ at the KEK centre-of-mass energy.
- (e) Describe, with reference to particle detectors, how one would identify both the $e^+e^- \rightarrow b\bar{b}$ and $e^+e^- \rightarrow \mu^+\mu^-$ processes. [7]

PHASG442/2008

CONTINUED

[5]

[3]

[2]

6. (a) Deep inelastic electron-proton (e⁻p) scattering can be viewed in terms of a massless parton carrying a fraction, κ, of the proton's 4-momentum exchanging a photon of 4-momentum, q, with the electron. By considering the change in the quark's four-momenta in the quark-photon scattering process, show that:

$$\kappa = \frac{Q^2}{2P \cdot q},$$

where $Q^2 = -q^2$ and P is the proton's 4-momentum.

(b) Draw the Feynman diagram for deep-inelastic $e^-p \to e^-X$ scattering. For this process, if the initial electron has energy E_e and the scattered, final state electron has energy E'_e , emerging at an angle θ to the original electron direction, show, for $m_e^2 \to 0$, that:

$$Q^2 = 4E_e E'_e \sin^2 \frac{\theta}{2}$$

(c) The structure function $F_2(x)$ for electron-nucleon scattering is defined as $\frac{1}{x}F_2(x)^{eN} = \sum_i e_i^2 q_i(x)$ where *i* runs over all the quarks and anti-quarks in the nucleon, *N*, and $q_i(x)$ is the probability that the *i*th quark carries a fraction, *x*, of the nucleon's momentum. Assuming the proton and neutron are part of an isospin doublet, show that:

$$\frac{F_2(x)^{ep}}{F_2(x)^{en}} = \frac{4u_V(x) + d_V(x)}{4d_V(x) + u_V(x)} \text{ as } x \to 1 \quad \text{and} \quad \frac{F_2(x)^{ep}}{F_2(x)^{en}} = 1 \text{ as } x \to 0,$$

where u_V and d_V are the valence up and down quark distributions in the proton, respectively and $F_2(x)^{ep}$, $F_2(x)^{en}$ are the $F_2(x)$ values for electron-proton and electron-neutron scattering respectively.

(d) The integral, $\int_0^1 (F_2^{ep}(x) + F_2^{en}(x)) dx$, is experimentally determined to have a value of 0.3. Neglecting strange and heavier quarks, estimate the fraction of the proton's momentum carried by up and down quarks.

[3]

[7]

[2]

[8]

PHASG442/2008

END OF PAPER