Answer FOUR questions

Mark Allocation

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

Masses and Other Values

The following symbols may be used in this paper. The following values for these quantities may be assumed for this paper.

Meaning	Symbol	Value
Mass of u quark	$m_{ m u}$	1 MeV
Mass of d quark	$m_{ m d}$	$2 { m MeV}$
Mass of s quark	$m_{ m s}$	$0.2~{\rm GeV}$
Mass of c quark	$m_{ m c}$	$1.5 \mathrm{GeV}$
Mass of b quark	$m_{ m b}$	$4.5 \mathrm{GeV}$
Mass of t quark	$m_{ m t}$	$172 { m ~GeV}$
Mass of all neutrinos	$m_{ u}$	0
Mass of Z boson	$M_{\rm z}$	$91~{\rm GeV}$
Mass of W boson	$M_{\rm w}$	$80 { m GeV}$
Width of Z boson	$\Gamma_{\mathbf{z}}$	$2.5~{\rm GeV}$
Weinberg Angle	$ heta_{ m w}$	28.66°
Speed of Light	c	$3 \times 10^8 \mathrm{\ ms^{-1}}$
Fermi Weak Decay Constant	$G_{ m F}$	$1.11 \times 10^{-5} { m GeV}^{-2}$
EM Coupling	$\alpha = e^2/(4\pi)$	1/137

Dirac Matrices

The Dirac γ matrices satisfy $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$ (for $\mu, \nu = 0, 1, 2, 3$) are defined as:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i=1,2,3} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

And the Pauli spin matrices, σ_i , are:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c}) = \vec{a} \cdot \vec{c} + i\vec{\sigma} \cdot (\vec{a} \times \vec{c})$ for 3 component vectors \vec{a}, \vec{c} .

Cross Sections & Natural Units

 $1 \text{ barn} = 10^{-28} \text{ m}^2$ In natural units $1 \text{ m} = 5.068 \times 10^{15} \text{ GeV}^{-1}$.

PHASG442/2007

PLEASE TURN OVER

[4]

[1]

[1]

[4]

[4]

[5]

1. (a) Particle A has a momentum four-vector P_A and interacts with particle B with momentum four-vector P_B to produce particles C and D with momentum four-vectors P_C and P_D respectively. The rest masses of particles A, B, C and D are m_A , m_B , m_C and m_D respectively. The Mandelstam variables s, t and u are defined by:

$$s = (P_A + P_B)^2; \quad t = (P_A - P_C)^2; \quad u = (P_A - P_D)^2.$$

Show that: $s + t + u = m_A^2 + m_B^2 + m_C^2 + m_D^2$.

- (b) Give one experimental observation for each of the three following statements that provides evidence that quarks:
 - are spin 1/2 fermions [1]
 - are fractionally charged
 - carry colour.
- (c) Draw the two lowest order Feynman diagrams with the highest cross section for the scattering of a 2 GeV muon neutrino from a proton resulting in a $\mu^$ in the final state.
- (d) The differential cross sections for scattering neutrinos, $\sigma(\nu p)$, and anti-neutrinos, $\sigma(\bar{\nu}p)$, with a stationary proton target can be approximated by:

$$\frac{d^2\sigma(\nu p)}{dxdy} = \frac{G^2 xME}{\pi} \left[2d(x) + 2(1-y)^2 \overline{u}(x) \right]$$
$$\frac{d^2\sigma(\overline{\nu}p)}{dxdy} = \frac{G^2 xME}{\pi} \left[2\overline{d}(x) + 2(1-y)^2 u(x) \right]$$

where M is the proton rest mass, E is the neutrino or anti-neutrino energy and $u(x)dx, \overline{u}(x)dx, d(x)dx, \overline{d}(x)dx$ represent the number of u, \overline{u}, d and \overline{d} quarks in the proton that carry a fractional momentum in the range $x \to x + dx$. Assuming isospin symmetry between the proton and neutron and equality of their masses, show that:

$$\frac{d^2\sigma(\nu d_{np})}{dxdy} = \frac{G^2 xME}{\pi} \left[u(x) + d(x) + (1-y)^2 \left(\overline{u}(x) + \overline{d}(x) \right) \right]$$

where d_{np} is a deuteron containing one proton and one neutron and then obtain an expression for $\frac{d^2\sigma(\overline{\nu}d_{np})}{dxdy}$.

(e) Integrate over y and x and show that:

$$\sigma(\nu d_{np}) - \sigma(\overline{\nu} d_{np}) = \frac{2G^2 M E}{\pi}$$

CONTINUED

PHASG442/2007

2. Assume that the free particle (E > 0) Dirac spinor solution is:

$$\psi_u^{a,b} = \sqrt{|E| + m} \left(\begin{array}{c} \chi^{a,b} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi^{a,b} \end{array} \right) e^{-ip_\mu x^\mu} \quad \chi^a = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \quad \chi^b = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

and the free particle (E < 0) Dirac spinor solution is:

$$\psi_v^{a,b} = \sqrt{|E| + m} \begin{pmatrix} \frac{\vec{\sigma} \cdot \vec{p}}{E - m} \phi^{a,b} \\ \phi^{a,b} \end{pmatrix} e^{-ip_\mu x^\mu} \quad \phi^a = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \phi^b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

(a) The charge conjugate spinor of ψ , ψ_C , is defined by

$$\psi_C = i\gamma^2 \psi^*$$

By using the explicit form of the Pauli matrices, determine the charge conjugate spinor of ψ_u^a and show how it is related to ψ_v^a . Explain the significance of this result.

(b) Show that if $m \ll E$

$$\gamma^5 \psi_u^a \sim \left(\begin{array}{cc} \vec{\sigma} \cdot \hat{p} & 0\\ 0 & \vec{\sigma} \cdot \hat{p} \end{array}\right) \psi_u^a$$

where $\hat{p} = \vec{p}/|\vec{p}|$

(c) If the projection operators, P_R and P_L , are defined by:

$$P_R = \frac{1}{2}(1+\gamma^5)$$
 $P_L = \frac{1}{2}(1-\gamma^5)$

Show, by constructing a helicity operator, that in the ultra-relatavistic limit, $P_{R,L}$, project out the positive and negative helicity components of a free Dirac spinor.

(d) What experimental observation could be used to show that the neutrino is a Majorana and not a Dirac particle ?

Explain why the observation is not allowed for Dirac particles.

PLEASE TURN OVER

[4]

[8]

[5]

[3]

[2]

[5]

[4]

- 3. (a) What measurements at the Tevatron pp collider can be used to constrain the predicted mass of the Higgs boson?
 - (b) Draw the Feynman diagram that has the highest cross section for the production and subsequent decay of a Higgs boson of mass 160 GeV at the Tevatron collider. You need not consider any hadronisation processes.
 - (c) Draw a Feynman diagram for a process that will occur at a far greater rate than the above Higgs process but will result in the same final state particles. Explain briefly why the rate is so much higher.
 - (d) If the Higgs boson decays to two particles A and B of mass m_A and m_B respectively, show that the invariant mass, m_{inv} , of the A + B system and hence of the Higgs boson is given by:

$$m_{\rm inv}^2 = m_A^2 + m_B^2 + 2\left[E_T^A E_T^B \cosh(\eta_A - \eta_B) - \mathbf{p}_T^A \cdot \mathbf{p}_T^B\right]$$

where $E_T \equiv \sqrt{E^2 - p_z^2}$, \mathbf{p}_T is the transverse momentum 2-vector $= (p_x, p_y)$.

You may assume that:

 $E_T \cosh \eta = E$, $E_T \sinh \eta = p_z$, $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$

(e) If the angle between \mathbf{p}_T^A and \mathbf{p}_T^B is $\Delta \phi$ and $\Delta \eta = \eta_A - \eta_B$, show, using the appropriate Taylor expansions, that for massless A and B particles with small $\Delta \phi$ and $\Delta \eta$

$$m_{\rm inv}^2 \approx |\mathbf{p}_T^A| |\mathbf{p}_T^B| \left(\Delta \eta^2 + \Delta \phi^2\right)$$

You may assume that: $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}; \quad \cosh(x) = \cos(ix)$

(f) If no Higgs boson is found at the LHC; draw a Feynman diagram of the process one could study to try to elucidate the mechanism of electroweak symmetry breaking.

PHASG442/2007

CONTINUED

[4]

[3]

[2]

[Part marks]

- 4. (a) Explain with the help of two Feynman diagrams why the value of the Fermi weak decay constant, G_F^{β} , deduced from the rate of nuclear β^- decays is slightly less than the value, G_F^{μ} , deduced from the rate of μ^- decay. Approximately what value would you expect for G_F^{β}/G_F^{μ} ?
 - (b) Explain why the introduction of a phase into the CKM matrix can produce CP violation and why observations of CP violation are important.
 - (c) Write down the formula for the partial width, Γ_{cb} , for the decay $\overline{B^0} \to D^+ \mu^- \overline{\nu}_{\mu}$ in terms of the $\overline{B^0}$ lifetime, τ_B , and the branching ratio, BR, for the decay. How is Γ_{cb} related to V_{cb} ?
 - (d) Draw a Feynman diagram for the decay $\overline{B^0} \to D^+ \mu^- \overline{\nu}_{\mu}$, followed by the decay $D^+ \to \overline{K_s^0} \pi^+$. Explain briefly, with reference to appropriate particle detectors, how one could identify the D^+ meson in this decay sequence.
 - (e) The LEP accelerator had 2 counter circling beams that collided electrons and positrons head on. Both beams had an energy of 45.5 GeV. Consider the case of Z production and its subsequent decay to a $b\bar{b}$ pair. Assuming the b quarks form B-meson bound states, how far on average (in cm) would one expect expect each of the B-mesons to travel before decay assuming that the lifetime of B mesons is ~ 1.5 ps? How could one measure this decay distance ?

The quark content of $\overline{B^0}$ is $b\overline{d}$, D^+ is $c\overline{d}$, $\overline{K_s^0}$ is $s\overline{d}$ and π^+ is $u\overline{d}$

PHASG442/2007

PLEASE TURN OVER

[2]

[5]

[4]

[3]

[6]

- 5. (a) Draw the two lowest order Feynman diagrams for $e^+e^- \rightarrow \mu^+\mu^-$. Write down fermion coupling expressions for the vertex factors in each diagram in terms of the electromagnetic coupling, g, the Dirac gamma matrices, the Weinberg angle, θ_W , and the vector, C_{fV} , and the axial-vector, C_{fA} couplings.
- [4]

[3]

[5]

 $[\mathbf{2}]$

[2]

- (b) If θ is the angle of the μ^- with respect to the incoming e^- in the e^+e^- centre of mass frame, how would one expect the cross section for the above process to depend on $\cos \theta$ for a purely vector interaction? Why is this not observed even for e^+e^- centre of mass energies, \sqrt{s} , of 30 GeV ?
- (c) $A_{\rm FB}$ is a measurement of the angular asymmetry in $\cos \theta$ of μ^- from the above interaction. With reference to the Fermi weak decay constant, G_F, the EM coupling, α , and the centre of mass energy, \sqrt{s} , obtain a simple expression for the approximate value of $A_{\rm FB}$ for $\sqrt{s} \ll M_z$ and determine a value of $A_{\rm FB}$ at $s = 900 \text{ GeV}^2$.
- (d) Why do we expect the above formulae for A_{FB} not to be valid for the process $e^+e^- \rightarrow e^+e^-$ at $\sqrt{s} = 30$ GeV ?
- (e) The above formulae for A_{FB} are leading order formulae. Draw a higher order Feynman diagram that would modify the prediction for A_{FB} and could be used to make a prediction for the mass of the top quark.
- (f) At the Tevatron $p\overline{p}$ collider, W bosons are produced through quark anti-quark annihilation. θ is the angle defined with respect to the proton direction. On average, the *u* quark carries a greater fraction of the proton's momentum than the *d* quark. With reference to appropriate Feynman diagrams, explain what one would expect for the distribution of positrons and electrons from W decay as a function of $\cos \theta$.

[4]

PHASG442/2007

CONTINUED

[6]

[6]

6. (a) The Lagrangian density for free electrons is:

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi$$

Show that \mathcal{L} is invariant under global gauge (phase) transformations but not under local gauge (phase) transformations.

(b) Local gauge invariance can be achieved by replacing the derivative ∂_{μ} with the "covariant derivative"

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$

(e is a constant), as long as A_{μ} transforms in a certain way. Derive the transformation rules for A_{μ} and give its physical interpretation.

- (c) What would be the implications of adding a term of the form $\frac{1}{2}m_A^2 A^{\mu}A_{\mu}$ to the QED Lagrangian density? [3]
- (d) Show that the substitution of the Lagrangian density:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j_{\mu}A^{\mu}$$

into the Euler-Lagrange equation for A_{μ} gives Maxwell's equations i.e.

$$\partial_{\mu}F^{\mu\nu} = j^{\nu}$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

The Euler-Lagrange equation for a variable ϕ is:

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

PHASG442/2007

END OF PAPER

[5]