
Answer EVERY question from section A and TWO questions from section B.

The numbers in square brackets in the right-hand margin indicate the provisional allocation of
maximum marks per sub-section of a question.

Mass of the electron me = 9.11× 10−31 kg
Charge on the electron e = −1.602× 10−19 C

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Boltzmann’s constant kB = 1.38× 10−23 J K−1

Planck’s constant/2π h̄ = 1.05× 10−34 J s

SECTION A [Part marks]

1. Draw a sketch showing the three-dimensional arrangement of lattice points in the body
centred cubic (BCC) lattice. How many nearest neighbours surround each lattice point? [3]

If a BCC lattice is filled with touching spheres, what fraction of space lies inside the
spheres? [4]

2. The Lennard-Jones (LJ) potential is used to model the interaction between two atoms of
inert gas separated by a distance, R,

U(R) = 4ε

[( σ
R

)12

−
( σ
R

)6
]
.

What is the physical mechanism underlying each of the two terms? [3]

For an isolated pair of atoms interacting by this LJ potential, determine their equilibrium
separation. [3]

3. Sketch a typical wavefunction of electrons inside a metal crystal that justifies the use of
the free electron approximation, even when a strong influence of the ion cores is present.

[3]

Draw a detailed diagram showing how the filling of states in a free-electron metal
changes when an electric field is applied. What mechanism is responsible for main-
taining a steady state configuration? [4]
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4. A piece of monovalent metal, such as sodium, contains N atoms within a volume V .
Use the free-electron gas model to derive the Fermi energy, which is the energy of the
highest-lying occupied electronic state relative to the lowest. [4]

Explain how this energy is responsible for the metallic cohesion of sodium. [3]

5. Sketch the arrangement of electron bands near the Fermi level of a semiconductor, indi-
cating which bands are (mostly) filled and which are (mostly) empty. Be sure to label
the axes and bands. [3]

Use your diagram to explain the dominant influence of temperature on the concentration
of “holes” in an undoped semiconductor. [4]

6. Describe with the aid of a suitable diagram how a “p-channel” field-effect transitor can
be made by suitable doping of a block of silicon. [4]

Explain briefly how the device can be used to amplify an electrical signal. [2]
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SECTION B

7. The energy of an electron within a band as a function of its wavevector is given by the
tight-binding expression (in one dimension),

E(k) = −α− γ
∑

m

exp(−ikρm)

where γ is given by the integral expression

γ = −
∫
φ∗(x− ρ)Hφ(x)dr.

(a) Explain the meaning of all the symbols represented in these expressions. What is the
range of the sum and integral? [8]

(b) What is the corresponding expression for α in terms of the same symbols? [6]

(c) Evaluate the integral γ for the following wavefunction, assuming it is an eigenstate
of the Hamiltonian, being careful to distinguish the cases x0 ≤ 2ρ and x0 > 2ρ: [8]

φ(x) =
√

1
2x0

|x| ≤ x0

φ(x) = 0 |x| > x0

(d) Hence evaluate the energy of an electron in a linear chain of these atoms with a spac-
ing a and make a graph of the result for the two cases x0 ≤ 2a and x0 > 2a. [8]

8. This question refers to the one-dimensional phonon dispersion relation.

(a) Show, with the aid of a suitable diagram, the difference between how the atoms move
in a longitudinal and transverse acoustic mode of vibration of a crystal lattice. [6]

(b) Derive an expression for the allowed frequencies of longitudinal waves in a one-
dimensional chain of identical atoms, each of mass M , spaced a apart, connected by
springs of force constant C as a function of the wavevector K. [10]

(c) Show by substitution that the frequencies corresponding to K = π
a
± ∆k are the

same. [8]

(d) Demonstrate, with the aid of a suitable diagram, that the positions of the atoms at all
times corresponding to K = π

a
±∆k are also the same. [6]
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9. Powder specimens of three different monoatomic cubic crystals are analysed with X-ray
diffraction (wavelength 1.5 Å). It is known that one sample is simple cubic (sc), one is
face-centered cubic (fcc) and one has the diamond structure (diamond). The approximate
positions (2θ) of the first four peaks in each case are:

A B C
2θ sin2 θ 2θ sin2 θ 2θ sin2 θ

42.2 ◦ 0.130 28.8 ◦ 0.062 42.8 ◦ 0.133
49.2 ◦ 0.178 41.0 ◦ 0.123 73.2 ◦ 0.355
72.0 ◦ 0.345 50.8 ◦ 0.184 89.0 ◦ 0.491
87.3 ◦ 0.476 59.6 ◦ 0.247 115.0 ◦ 0.711

For later convenience, the corresponding sin2 θ have also been given.

(a) Why is diffraction only seen at these angles and not in between? State the law that
connects the Bragg angle θ and the spacing between the lattice planes, and relate it to
the reciprocal lattice vector ~G. [7]

(b) Consider the fcc lattice as an sc lattice with a 4-atom basis and the diamond lattice
as an fcc lattice with a basis {0, 0, 0}, { a

4
, a

4
, a

4
}, where a is the side of the conventional

cubic cell. Derive analytical expressions for the structure factor,

SG =
∑

j

fjei ~G·~rj ,

for the monoatomic sc, fcc and diamond lattices. ~rj is the position of the j’th atom in
the (here) simple cubic unit cell, and fj its atomic form factor. [6]

(c) Determine the reflections (hkl) that give rise to peaks in the diffraction pattern for
sc and fcc, for all reflections up to (300), and show that two of the data columns are
consistent with these. Hence identify all three structures. [6]

(d) Assuming that the lowest-order reflection for the diamond lattice is (111), find the
length a of the conventional cubic cell side for all three samples. [5]

(e) Which general change would you see in the diffraction pattern for A, B, and C if fj
for the corner atoms in the conventional cubic cell were different from fj for the other
atoms? Explain your answer. [6]
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10. The energy of a collection of oscillators of frequencies ωK in thermal equilibrium is

U =
∑

K

1

exp(h̄ωK/kBT )− 1︸ ︷︷ ︸
I

h̄ωK︸︷︷︸
II

,

where K is the wavenumber. For convenience, we have omitted the polarisation here.

(a) Describe the physical meaning of the terms I and II. [4]

(b) Assume a one-dimensional crystal of length L, consisting of N equidistant identical
atoms. Use periodic boundary conditions to show that the density of K states is given
by

D(K) =
L

2π
.

With this result, derive an integral expression for the energy U . [6]

(c) Which main two assumptions are made in the Debye theory? [6]

(d) Show that these assumptions lead to the following expression for U :

U =
Lk2

BT
2

2πvsh̄

∫ xD

0

x

ex − 1
dx .

The calculation of xD is not requested here. [9]

(e) Some materials consist of weakly coupled, nearly one-dimensional structures, lead-
ing to material properties that strongly deviate from three-dimensional materials. Based
on the result in (d) and on the low-temperature limit of the standard (three-dimensional)
Debye model, suggest an experiment to determine whether a material is one- or three-
dimensional. You may use the result

∫ ∞

0

x

ex − 1
dx =

π2

6
.

[5]
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