
Answer ALL SIX questions from Section A and THREE questions from Sec-
tion B.

The numbers in square brackets at the right-hand margin indicate the provisional alloca-
tion of marks per sub-section of a question.

You may assume the following values:

Planck constant h = 6.63× 10−34 J s; h̄ = 1.05× 10−34 J s;

Electronic charge e = 1.60× 10−19 C;

Mass of electron me = 9.11× 10−31 kg;

SECTION A [Part
marks]

1. The time-dependent Schrödinger equation for a particle moving in one dimension
can be written

− h̄2

2m

∂2Ψ

∂x2
+ V (x, t)Ψ(x, t) = ih̄

∂Ψ

∂t
.

Define the quantities V and Ψ appearing in this equation. [3]

Give an expression involving one of the above quantities for the probability that
the particle may be found in a small region of space between the positions x and
x+ δx. [3]

2. The function
ψ(x) = Ceikx,

where C and k are constants, is a solution to the time-independent Schrödinger
equation for a particle moving in free space in one dimension.

How is the quantity k related to the de Broglie wavelength of the particle? [2]

The function ψ(x) is an eigenfunction of the momentum operator

p̂ = −ih̄
∂

∂x
.

By substituting ψ(x) into the defining equation for an eigenfunction, find the cor-
responding eigenvalue. [4]

3. Let the functions {φn} be the eigenfunctions of some Hermitian operator. Explain
what is meant if it is stated that this set of functions is orthonormal. [4]

The expansion postulate allows us to express an arbitrary function ψ in terms of
such a set of eigenfunctions. What is the general form of such an expression? (You
are not required to evaluate the quantities appearing in it.) [3]
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4. Define the commutator of two operators Â and B̂. [3]

Explain the physical significance of the operators L̂2 and L̂z in quantum mechanics. [2]

These two operators are compatible; what does this mean, and what can you deduce
about their commutator? (Detailed mathematical working is not required.) [3]

5. The true potential energy of an electron in a hydrogen atom depends only on its
distance from the nucleus. What are the consequences of this fact for the solution
of the Schrödinger equation in this system? [3]

The effective potential for an electron in a state of orbital angular momentum l in
a hydrogen atom can be written as

Veff(r) =
−e2

4πε0r
+
l(l + 1)h̄2

2mer2
,

where me is the electron mass. What is the physical significance of the two terms
in this effective potential? [4]

6. In a Stern-Gerlach experiment, a beam of sodium atoms is passed through an inho-
mogeneous magnetic field. Explain why atoms are attracted into the strong-field or
weak-field regions, according to the directions of their magnetic moments. [2]

The experiment divides the atoms into groups according to the value of the z com-
ponent of the angular momentum of the outermost electron. How many such groups
are there? [2]

According to the theory of spin in quantum mechanics, these groups correspond to
different values of the quantum number ms. What are the possible values of ms for
an electron? [2]
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SECTION B

7. State the condition for the wave function of a particle moving in one dimension to
be correctly normalized. [2]

At a certain instant a particle has the wave function

ψ(x) =

{
C(a2 − x2) |x| ≤ a;

0 |x| > a.

Find a suitable value of the constant C so that ψ obeys the normalization condition. [4]

What is the probability that the particle is found between x = 0 and x = a? [4]

The expectation value of an operator Ô in one dimension can be written

〈Ô〉 =
∫ ∞
−∞

ψ∗(x)Ôψ(x) dx.

What is the physical significance of the expectation value? [2]

Calculate the expectation values of the following quantities, using the normalized
wave function ψ(x). You may wish to make use of symmetry arguments where
possible to simplify the working.

(a) The position x̂; [2]

(b) The momentum p̂; [2]

(c) The kinetic energy p̂2/2m, where m is the particle’s mass. [4]
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8. A particle of mass m moves in a finite one-dimensional rectangular well, located
between x = −a and x = +a, such that the potential is

V (x) =

{
0 (|x| ≤ a);
V0 (|x| > a),

with V0 > 0.

Sketch a graph of the potential V (x). [2]

The time-independent Schrödinger equation inside the well is

− h̄2

2m

d2ψ

dx2
= Eψ (|x| ≤ a).

Write down the general solution to this equation for positive energies E in terms of
the wavenumber k. How is k related to E? [4]

What is the Schrödinger equation in the barrier region |x| > a? [2]

Assuming the energy E is less than V0, the general solution in the barrier regions
can be written

ψ(x) = Ceκx +De−κx, (|x| > a)

where C and D are arbitrary constants. Find the value of the constant κ in terms
of the energy E, and show that

k2 + κ2 = k2
0, where

h̄2k2
0

2m
= V0.

[4]

Consider the right-hand barrier region (x > a). One of the two terms in the general
solution can be ruled out on physical grounds; which is it, and why? [3]

What two conditions do the solutions for ψ in the different regions have to satisfy
at the edges of the well x = ±a? [2]

In the case of even solutions where ψ(x) = ψ(−x), these two conditions can be
shown to require that

k tan(ka) = κ =
√
k2

0 − k2.

Suppose the particle concerned is an electron. Working in atomic units (h̄ = me = 1)
find the depth V0 of a well having a = 1 unit, given that it possesses an even
stationary state with energy E = 0.125 units. [3]

PHYS2B22/2006 CONTINUED

4



9. To which physical quantity does the Hamiltonian operator Ĥ correspond in quan-
tum mechanics? Write down the form of the Hamiltonian for a particle moving in
one dimension in a time-independent potential, and give the equation defining an
eigenfunction ψn of the Hamiltonian and its corresponding eigenvalue En. [4]

A solution of the full time-dependent Schrödinger equation can be constructed by
taking

Ψn(x, t) = exp(−iEnt/h̄)ψn(x).

By substituting into the time-dependent Schrödinger equation, show that any linear
combination of two such solutions, in the form c1Ψ1(x, t) + c2Ψ2(x, t) where c1 and
c2 are constants, is also a solution. [4]

In atomic units and spherical polar coordinates, the 1s and 2s stationary-state wave
functions of the electron in a hydrogen atom can be written respectively as

ψ1s(r, θ, φ) = 2e−rY00(θ, φ); ψ2s(r, θ, φ) =
1√
2
(1− r

2
)e−r/2Y00(θ, φ).

What are the corresponding energies E1s and E2s, also in atomic units? Hence write
down the corresponding time-dependent solutions Ψ1s(r, θ, φ, t) and Ψ2s(r, θ, φ, t). [4]

Suppose the electron’s wave function at time t = 0 is

Ψ(r, θ, φ, t = 0) =
1

3
ψ1s(r, θ, φ) +

2
√

2

3
ψ2s(r, θ, φ).

What is the wave function at subsequent times t? [4]

Hence show that the probability per unit volume (in atomic units) of finding the
electron near the nucleus (at r = 0) varies with time as

|Ψ(r = 0, θ, φ, t)|2 =
4

9π
cos2

(
3t

16

)
.

[4]

[The (l = 0,m = 0) spherical harmonic is Y00(θ, φ) = 1/
√

4π. The energy eigenvalue
of a hydrogen-atom stationary state having principal quantum number n is En =
−1/2n2, in atomic units. You may assume that

h̄ = 1; me = 1;
e2

4πε0
= 1

in atomic units.]
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10. (a) In spherical polar coordinates, the operator L̂z can be written

L̂z = −ih̄
∂

∂φ
.

Show that any function of the azimuthal angle φ of the form

fm(φ) = Ceimφ

is an eigenfunction of L̂z; find the corresponding eigenvalue, and explain why m
must be an integer. [4]

(b) Now look for eigenfunctions of the operator L̂2, having eigenvalue λ, which are
also eigenfunctions of L̂z, in the following way. Try a solution of the form,

Y (θ, φ) = Θ(θ)eimφ,

and show that

(i) Y is indeed still an eigenfunction of L̂z; [2]

(ii) The unknown function Θ obeys the equation [4]

−sin θ
∂

∂θ

(
sin θ

∂Θ

∂θ

)
+m2Θ =

λ

h̄2 sin2 θΘ.

(c) The solutions to this equation which are finite at θ = 0 and θ = π are the
associated Legendre functions

Θ(θ) = Pm
l (cos θ);

the eigenvalues are λ = l(l+ 1)h̄2, where l is a non-negative integer (l = 0, 1, 2, . . .).
Using the information about these functions given below, identify the values of
l and m, and the corresponding eigenvalues of L̂z and L̂2, for the following two
eigenfunctions (which are not normalized): [6]

Y (1) = sin θeiφ; Y (2) = sin θe−iφ.

(d) The angular part of a particle’s wave-function is given by

ψ(θ, φ) = A+B sin θ cosφ.

What would be the possible results of measuring the particle’s total orbital angular
momentum L̂2 and its z-angular momentum L̂z? [4]

[The operator L̂2 can be written in spherical polar coordinates as

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
.

You may use without proof the expressions

P 0
0 (cos θ) = 1; P±1

1 (cos θ) =
√

1− cos2 θ = sin θ; P 0
1 (cos θ) = cos θ

for the first few associated Legendre functions.]
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11. Consider a particle of mass m moving freely in two dimensions but confined within
a rectangular box by infinitely high potential walls at x = ±a and y = ±b.

(a) Write down the time-independent Schrödinger equation satisfied by the wave
function ψ(x, y) inside the box (i.e. for −a ≤ x ≤ a;−b ≤ y ≤ b). (You may
take the value of the potential energy to be zero in this region.) [4]

(b) Write down the boundary conditions obeyed by ψ at the edges of the box,
explaining the reasons for them. [4]

(c) Show that, by writing
ψ(x, y) = X(x)Y (y),

you can separate the Schrödinger equation into one part depending only on x
and one part only on y. Hence show that

− h̄2

2m

d2X

dx2
= ExX,

where Ex is a constant whose origin you should explain, and find a correspond-
ing equation satisfied by Y . [5]

(d) Solve the equations for X and Y , subject to the boundary conditions you found
in part (b). [4]

(e) Hence show that the lowest energy eigenvalue of the system is

h̄2π2

8m

[
1

a2
+

1

b2

]
Give an expression for the corresponding ground-state wave function ψ(x, y).
(It need not be normalized.) [3]

PHYS2B22/2006 END OF PAPER

7


