Answer SIX quoestions from Section A and THREE questions from
Section B.

The mumbers in square brackets in the ripht-hand marpin indieate the provisional alle-
cation of maxirum marks per sub-section of a guastion.

SECTION A [Part marks]
1. Describe the tunnelling phenomencon of quantum mechanics. [3]
Briefly discuss a physical process in which it is important. [4]

2. A particle mowes in a one-dimensional finite square potential well with boundaries
located at £ = —e and £ = +ea. Contrast qualitatively the predictions of clas-
sical and quantum mechanics for this system including a sketch of the position
probahility distribution for the lowsst guantumn epergy state in both cases. [7]

3. State the nneertainty prineiple for a particle moving in one dimension with mo-
mentum variable py and position variable z. [2]
Define the uncertainties in momentum and pesition in terms of the corresponding
operators and their expectation values, and explain the meaning of these defini-

tions. [5]
4. What is meant by the statement that an energy lewsl is degenerate? [2]

What is meant by the statistical weight of such a level? QGive the statistical

weight of a hydrogen energy level of principal quantum number n. [3]

State how this statistical weight is modified if electron spin is neglected and explain

why. [2]
5. Define the comnmtator of two cperators 4 and B. [2]

Show that the commutation relation for the operators, £ and g, = —iﬁ,a—, TeOre-

T
senting position and momentum in one dimension is [£, 7] = ik [5]

6. The wave function of a particle moving in one dimension is Tz, #). What is meant

by the statement that this wawe function is normalised to unity? [2]
If the particls is localised hetwesn £ = —a and £ = +a and its space waw function
is u{z) = ccos (g—m), determine the normalisation constant, « [5]
a
7. Briefly describe Compton’s X-ray scattering experiment. [6]
What is inverse Compton seattering? [1]
8. Describe briefly the Stern-Gerlach experiment for the measurement of the magnetic
moments of atoms, and discuss the signficance of the results obtained. [7]
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SECTION B

9. Discuss the waw: and particle nature of both matter and electromagnetic radia-
tion. Male: detailed reference to evidence from the photoslectric effect and the
expearimant of Davisson and Germer.

1{). The reduced radial Schridinger equation, in atomic units, for an electron in a
bydrogen atom for which the orhital anpulsar momentum quantum mumber is zero,

is
&2 2 1
(E*F' F) Fir) =0,
where v is related to the total energy by B = —1/{2s2).
{2) Show that as r — 0, a physically acceptable solution of this equation is

F(r) = e

{b) By putting F{r} = exp{—r/u)y{r) in the radial Schrodinger equation, show

that
d2y Z(dl v)
2y — =2

drf  w\dr r

{c} Assuming that 4{r) can be expanded as the series

a0

yr) =3 apr®t

=0

where ag # {), show that the coefficients e, in the series satisfy the recurrence
relation,

plp+ l)a, = %{p - via, .

{d)} Solutions of the radial Schrédinger equation exist which are bounded for all r
provided that v = n, where n is a positive integer. Derive the un-normalized
radial function for the ds state.
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11. The one-dimensional time-independent Schrodinger equation for a particle of mass
m moving in a potential ¥ {z) is given by

-+ V{m}) nu(z) = Eulz),

where E is the total enargy. A potential barrier is defined by

Region 1 z < () and Viz) =10
Region 2 <z<e and Viz) =Va
Region 3 z>a and Viz) =10

where Vo> 0 and e > ().
Consider the special case when the particle energy is equal to the barrier height,
E' = V4. Lat there be a flux of particles incident on the barrier from z < ().

a) Demonstrate that the Schrodinger equation has the following solutions in the
juity E
throo regi-::ns,

u(z) = pikT o Ag—ike
nug({z) = Bm_+ 7
nuy{z) = Dk,

mE
7;:2 and A, B, and I are constants.

where & =
{b) What is the significance of the two terms in the solution in Region 1 and why
is thers no term in & for £ > a?

{c} State the continuity conditions that must be satisfied by the wave function at
z=1{ and £ = a.

{d) Show that the reflection coefficient for the barrier B = [A|? is given by

-1
k= [1 * kﬂaﬂ]

{2} What would be the transmission coefficient for this barrier if the incident
particles were electrons of energy (.0 atomic units incident on a barmer of
width 2 atomic units of length?

{f} What is the relationship betwesn the de Broglie wavelength of the incident
particles and the barrier width if the barrier transmits half of the incident
particles?
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12. (a) State the sigenwvulues of the orbital angular momentum operators I2 and I,.
How are the corresponding quantum numbers related? [3]

{b) If the orhital angular momeantum quantum number £ = 1, skatch the possible
crientations of the the anpular momentum vector L in the semi-classical vector
model and explain the diagram. [4]

{(c} The operators I, and I? can be pxprassed in terms of the spherical polar
angles (#, @) as

5 &

—th—,
do

, 1 & 18 . .8

2 = —f? — |sinf=— || .

Sin?0 92 | sindl 90 (51 6‘5)]

Given the unnormalised sphexical harmonic function
¥ {8, 0} = N o** gin’p,

where N is a constant, show that Y{d, ¢} is an sigenfunction of I, and I? and
determine the corresponding sipenvalues and anpulsar momentum quantum

numbers. [7]

d} Determine the sigenvalues of the oparator f;ﬁ in the general case. 3
g, E [3]

{e) Hence also determine the sigenvalues of the operator £2 + .f.':.. [8]

13. (a) Define the expectation value of a dynamical variable represented by an
operator A [2]

{b}) A Hermitian operator A is defined as ona for which, for all normalisable

functions f and g,
ff*_/-:lgd'r = f{jf}*gd'r.

Show that its expectation value is rasl. [3]
{e) The time-dependent Schrodinger equation is
- ow
HT =ih——,
"o
where H is the Hamiltonian operator. Show that, if Ais Hermitian, then
& _iu_i_1h a4
= =_<[H A sk
;<A ﬁc:[,]:>+c:at:> [8]

{d) Hence obtain Ehrenfusts’s Theoram for a particle moving in a potential V'

a o —
g <PP=— <V >,

where p is the momentum operator. Interpret this result physically. [7]
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