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Section A: Each question carries 5 marks. You should attempt ALL
five questions and give definitions where appropriate.

Question 1 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Hirayama families [2.5]

(b) Hill sphere [2.5]

Question 2 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Co-orbital satellites [2.5]

(b) Shepherding satellites [2.5]

Question 3 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Synchronous rotation [2.5]

(b) Tidal heating [2.5]

Question 4 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Chaotic motion [2.5]

(b) Surface of section [2.5]

Question 5 Describe briefly (in a few sentences) what is meant by each of the
following terms:

(a) Trans-Neptunian objects [2.5]

(b) The Nice model [2.5]
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Section B: Each question carries 25 marks. There are 4 questions.
You may attempt all questions, but only marks for the best 3 ques-
tions will be counted.

Question 6 A planet moves under the gravitational attraction of a central star and
its resulting path is an ellipse with the star at one focus. The relationship between
the planet’s radial distance, r from an origin O at the star and its true anomaly, f ,
is given in polar coordinates by,

r =
a(1− e2)
1 + e cos f

,

where a and e are the semi-major axis and eccentricity of the orbit. The same orbital
path can be described by the equation(

x

a

)2

+
(
y

b

)2

= 1 ,

where b = a
√

1− e2 is the semi-minor axis of the ellipse, (x, y) are the coordinates
of the planet in a frame with origin, O′, at the centre of the ellipse (midway between
the two foci) and the x-axis lies along the line joining the two foci.

(a) Draw a diagram to illustrate the relationship between the polar coordinate sys-
tem with origin O and the cartesian coordinate system with origin O′. Sketch
a circle of radius a centred on the origin O′ and use it to illustrate the relation-
ship between f and the eccentric anomaly, E. Derive expressions for r cos f
and r sin f , and hence show that

r = a(1− e cosE).

[9]

(b) Substitute the result from part (a) in the equation

ṙ =
na

r

√
a2e2 − (r − a)2 ,

where n is the mean motion of the object, and hence solve it to derive Kepler’s
equation,

M = E − e sinE ,

where M = n(t− τ) is the mean anomaly and τ is a constant. [9]

(c) E can be expressed as a power series in e. State two possible limitations to the
use of such a series for numerical solutions to Kepler’s equation. In planetary
dynamics, why is it advantageous to express quantities as series in M rather
than E? [7]
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Question 7 In the planar circular restricted three-body problem the equations of
motion of the test particle in the rotating frame are given by

ẍ− 2ẏ = Ux ÿ + 2ẋ = Uy ,

where
U =

1
2

(x2 + y2) +
µ1

r1
+
µ2

r2

and Ux = ∂U/∂x, Uy = ∂U/∂y, µ1 = m1/(m1 + m2), µ2 = m2/(m1 + m2), m2 <
m1. The square of the distances from the particle to the masses m1 and m2 are given
by r21 = (x+ µ2)2 + y2, r22 = (x− µ1)2 + y2 respectively.

(a) Show that the equations of motion have equilibrium solutions at the points
given by x0 = 1

2−µ2, y0 = ±
√

3/2. By considering a small displacement (X,Y )
from (x0, y0), derive a set of simultaneous linearised differential equations of
the form

(D2 − Uxx)X − (2D + Uxy)Y = 0
(2D − Uxy)X + (D2 − Uyy)Y = 0

where D ≡ d/dt and the Uxx = ∂2U/∂x2, etc are the partial derivatives evalu-
ated at (x0, y0). [12]

(b) The numerical values of Uxx, Uxy and Uyy at (x0, y0) are:

Uxx =
3
4
, Uxy = ±3

√
3

4
(µ1 − µ2) , Uyy =

9
4
,

where the upper sign in Uxy is for y0 = +
√

3/2 and the lower sign for y0 =
−
√

3/2. By assuming solutions of the form X = αeλt, Y = βeλt where α, β and
λ are constants, show that the simultaneous equations have a zero determinant
provided

λ4 + λ2 +
27
4
µ1µ2 = 0 .

Solve this to show that the equilibrium points are linearly stable provided

1− 27µ1µ2 > 0.

[9]

(c) The small Saturnian satellite, Pallene, is embedded in a faint, continuous,
narrow ring of material. Sketch the path of a ring particle in this system in
a frame moving with the angular velocity of Pallene indicating the location of
(x0, y0) in the Saturn-Pallene system. Briefly discuss two possible origins of
such a ring making clear which you think is more plausible. [4]
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Question 8 The tidal potential per unit mass experienced by a satellite of mass m
moving in a circular orbit of radius a due to the tidal bulge it raises on a homogeneous
planet of radius A and mass M (� m) is

V = −k2
Gm
a

(
A

a

)5

P2(cos θ) ,

where k2 (a constant) is the Love number of the planet, G is the universal gravita-
tional constant, θ is the lag angle and P2(x) = 1

2(3x2−1) is the Legendre polynomial
of degree 2.

(a) Calculate the tangential component of the force due to this potential and hence
show that the resulting torque experienced by the satellite is

Γ = Gm
2

a

(
A

a

)5 3
2
k2 sin 2θ.

[6]

(b) Let E be the sum of the rotational energy of the planet and the orbital energy
of the satellite–planet system. Show that Ė, the rate of change of this energy,
is given by

Ė = IΩΩ̇ +
1
2
mn2aȧ ,

where I is the moment of inertia of the planet, Ω is the rotational frequency
of the planet and n is the mean motion of the satellite. [6]

(c) Use the conservation of the total angular momentum (rotational plus orbital)
of the system and the result from part (b) to show that

Ė = −1
2
manȧ(Ω− n).

[7]

(d) Given that Ė = −Γ(Ω − n) < 0, use the results from parts (a), (b) and (c)
to show that ȧ ∝ a−11/2 for a given satellite, and give the explicit form of the
constant of proportionality. By integrating the equation and assuming that
the the initial orbital radius is much smaller than the current one, show that
this result can be used to provide evidence of significant tidal evolution in a
system of satellites orbiting a planet. [6]
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Question 9 (a) A planet moves in a circular orbit about a central star. In a
rotating frame moving with the uniform velocity of the planet, the path of
an unperturbed particle moving on an elliptical orbit interior to the orbit of
the planet can appear to be stationary at ‘cusp’ points in its orbit for certain
critical values of its eccentricity, ec. These occur because at its apoapse the
particle’s angular velocity exactly matches the (constant) angular velocity of
the planet. Given that the angular momentum per unit mass of the particle is
h = na2

√
1− e2, derive an expression for the angular velocity of the particle

at its apoapse. Hence show that if the particle’s motion is always in the orbital
plane of the planet and the particle is in a p + 1 : p resonance, show that the
value of ec is given by the solution of the cubic equation(

p

p+ 1

)2

(1 + ec)3 − 1 + ec = 0 .

[10]

(b) To lowest order in the eccentricity e, the averaged disturbing function experi-
enced by a particle at the p + 1 : p interior resonance in the planar, circular
restricted three-body problem is

R =
Gm′

a′
f(α) e cosϕ ,

where
ϕ = (p+ 1)λ′ − pλ−$

and where G is the universal gravitational constant, m′ and a′ denote the mass
and semi-major axis respectively of the perturbing object, f is a function of
α = a/a′ where a is the semi-major axis of the particle, λ′ and λ denote
the mean longitudes of the perturbing planet and particle respectively, and $
denotes the longitude of pericentre of the particle.

Ignoring the variation of the mean longitude at epoch, write down an expression
for φ̇ and explain what is meant by exact resonance.

Given that
dn
dt

=
−3
a2

∂R

∂λ
,

and ignoring any precession due to the resonance, show that ϕ satisfies the
pendulum equation,

ϕ̈ ≈ k sinϕ ,

to lowest order in the mass, giving the explicit form of the constant k. Sketch
the expected behaviour of φ as a function of time when (i) the system is close to
exact resonance and (ii) the system is in resonance but close to the separatrix
of the motion. [15]

End of Paper
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