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SECTION A

You should attempt ALL questions. Marks awarded are shown next to each ques-
tion.

1. (a) What mechanisms might be responsible for angular momentum transport in an
accretion disc? [3 marks]

(b) An accretion disc has a number density n = 3 × 1021 m−3 of atoms and ions
in its central plane at a distance R = 0.5Rdisc from the central star, where
Rdisc = 10

12 m is the overall radius of the disc. The temperature at this point is
T = 5× 104 K.
Given that the cross-section for collisions between its atomic particles is σ =
10−20m2 and their mean free path is given by L = 1/nσ, what is the mean free
path for these particles?

If the speed of sound in the gas is cs =
√

RT/µ , where R = 8.3 Jmol−1K−1 is the
gas constant, T is the temperature, and µ is the mean molecular mass, estimate
the kinematic viscosity ν due to atomic/molecular interactions to within an order
of magnitude.
If the evolutionary timescale of an accretion disc is τev ' R 2

disc/3ν, where Rdisc

is the overall radius and ν is the total kinematic viscosity, estimate to within an
order of magnitude the timescale of variations in density of the accretion disc if
viscosity is due entirely to atomic/molecular interactions. How does this compare
with the timescales observed for the outbursts of dwarf novae? [9 marks]

(c) What is the alpha model of viscosity that is used in modelling accretion discs?
[3 marks]

[Total 15 marks for question]
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2. (a) Derive the equation of hydrostatic equilibrium in the direction z perpendicular to
an accretion disc around a star of mass M ,

1

ρ

dP

dz
= − GM

(R2 + z2)3/2
z ,

on the assumption that the mass of the disc is negligible compared with that
of the star, where ρ(R, φ, z) is the density at a point in a cylindrical coordinate
system (R, φ, z) centred on the star, P (R, φ, z) is the gas pressure, and G is the
constant of gravitation.
Representing the pressure by the ideal gas law, P = RρT/µ, where R is the gas
constant, µ is the mean molecular mass and T is the absolute temperature, solve
the equation of hydrostatic equilibrium for an isothermal thin (z ¿ R) Keplerian
accretion disc to show that the density ρ at a distance z from the central plane
of the disc is

ρ(R, φ, z) = ρ0(R, φ) exp(−z2/2H2) ,

where H(R, φ) =
√

RT/µΩ2 is the half thickness and Ω(R) is the angular velocity

at radius R. [14 marks]

(b) Obtain an expression for the surface mass density Σ(R) at a radial distance R
from the central star for the isothermal accretion disc above. The standard result

∫ ∞

−∞

e−x2

dx =
√
π

may prove useful. [4]

(c) If the sound speed is cs =
√

RT/µ , what is the relationship between cs, the half

thickness H and the angular velocity Ω for the same isothermal disc? [2]
[Total 20 marks for question]
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3. (a) The drag force on a spherical particle moving through a gas when the radius a of
the particle is smaller than the mean free path of gas molecules can be represented
by Fdrag = πa2ρ csu, where ρ is the density of the gas, cs is the speed of sound
through the gas, and u is the velocity of the particle relative to the gas.
Derive from this the equation of motion for a spherical dust grain settling under
gravity to the central plane of a non-turbulent Keplerian protoplanetary disc,

dv

dt
=

3ρ cs
4ρgr a

v − Ω2z ,

where z is the distance from the plane, t is time, v = dz/dt is the velocity of
the grain relative to the gas, ρ is the density of the gas, ρgr is the density of the
material of the grain, and Ω(R) is the angular velocity of the disc at a distance
R from the the central star. Assume that z ¿ R. [8 marks]

(b) Assuming that the dust particles in question (a) fall from rest at a height above
the disc midplane equal to the half-thickness H of the disc, and that they quickly
reach their terminal velocity, show that the terminal velocity vt is

vt '
4aρgrΩ

2H

3ρcs
∼ 8aρgrΩH

3Σ
,

where Σ is the local surface density. [5]
Hence obtain an approximate expression for the settling time of the dust grains.

[2]
[Total 15 marks for question]
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SECTION B

Each question carries 50 marks. You may attempt all questions but only marks
for the best question will be counted.

1. (a) A binary star system consists of stars of masses m1 and m2 moving in circular
orbits about their centre of mass. Their separation isD. The system is represented
by a Cartesian coordinate system (x, y, z) rotating with an angular velocity Ω so
that the stars are stationary at (x1, 0, 0) and (x2, 0, 0) respectively (with x1 > 0
and x2 < 0). The x–y plane corresponds to the orbital plane and the origin is at
the centre of mass. Show that the gravitational potential Φ in the x–y plane in
this rotating coordinate system is

Φ(x, y) = − Gm2
√

y2 + (x− x2)2
− Gm1

√

y2 + (x− x1)2
− 1

2
(x2 + y2) Ω2 ,

where G is the constant of gravitation.
Sketch the contours of this gravitational potential in the x–y plane, for the case
where the mass of one component is larger than the other. Include the Roche
lobe and the position of the L1 Lagrangian point in this diagram. [10 marks]

(b) Using the expression for Φ given above, show that there exists a stationary point
in the potential on the line joining the stars (i.e. for y = 0 and z = 0), between
the two stars, at a distance rL from the star of mass m2 (at x = x2 + rL) where
rL satisfies

− m1

m2

D3r2

L + D3(D − rL)
2 −

(

m1

m2

+ 1
)

r3

L(D − rL)
2 +

m1

m2

Dr2

L(D − rL)
2 = 0

Can any precise simple analytic expression be given for this position of the L1

Lagrangian point in terms of m1,m2 and D? [12]

(c) Is any account taken of the Coriolis force if the potential Φ alone is used to
calculate the force acting on gas in the system? Give a reason for your answer.

[3]

(d) Explain under what circumstances Roche lobe overflow can occur. [3]

(e) Explain the difference between detached, semi-detached and contact binary stars.
[3]

(f) Show that in a semi-detached binary, gas from a lobe-filling star of mass m1 would
form a ring of radius

Rring =
(m1 +m2)

m2

r4
L

D3
,

around a star of mass m2 if gas interactions were not important, where D is the
separation of the two stars.
Hence show that Rring = D/8 if the stars have equal mass. [10]
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(g) What constraint on the second star does the size of this ring impose for the
formation of an accretion disc when the lobe-filling object is a main sequence
star? What two types of star might be the components of a cataclysmic variable
system? [4]

(h) In practice, viscosity causes the gas to form a disc instead of a ring. Sketch the
appearance of a typical accretion disc in a semi-detached binary system.

[5]

2. (a) Estimate the amount of potential energy released when mass falls on to a solar
mass neutron star as a fraction of the mass energy E = mc2 that is contained
in the same material. Assume the radius of the neutron star is 104 m. Give
your answer accurate to within a factor of 2 if G = 6.7 × 10−11 m3 kg−1 s−2,
c = 3.0× 108m, and the solar mass is 2× 1030 kg.
Is this larger or smaller than the energy available from nuclear fusion?

[4 marks]

(b) Accretion of matter on to neutron stars and black holes may occur up to a max-
imum rate known as the Eddington limited accretion rate. Explain briefly the
physical origin of this limit. [4]

(c) The radiative flux F within an optically thick gas is related to the temperature
gradient dT/dr over radial distance r from the radiation source by

F = − 4ac
3κρ

T 3
dT

dr
,

where T is the temperature, κ is a mean opacity, ρ is the density of the gas, a
is the radiation constant, and c is the velocity of light. The radiation pressure
within a black body of temperature T is Prad = aT 4/3.
Derive from these the expression for the Eddington limited accretion rate, ṁEdd,
of optically thick material on to a compact object of mass M ,

ṁEdd =
4πcRc

κ
,

where Rc is the radius of the compact object and G is the gravitational constant.
Hence show that if the radius Rc is five times the Schwarzschild radius RS =
2GM/c2,

ṁEdd =
40πGM

cκ
.

[22]

(d) The dominant source of opacity in a hot plasma is Thomson scattering by electrons
which has κ = 0.04 m2 kg−1. Estimate, to within an order of magnitude, the
maximum mass accretion rate on to a 108 solar mass black hole in an active
galactic nucleus in units of solar masses per year. You may use 1 year = 3.2×107s.

[4]
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(e) The effective temperature Teff at a distance R from the central object in an
accretion disc is approximately given by

Teff ' 1.2× 107 K
(

ṁ

M¯/yr

)1/4 (

M

M¯

)1/4 (
R

107m

)−3/4

,

where ṁ is the mass accretion rate and M is the mass of the central object.
Make an order of magnitude estimate of the effective temperatures encountered
for Eddington-limited accretion on to a 108 solar mass black hole if a typical
radius within the disc is R ∼ 1012 m. [4]

(f) In which part of the electromagnetic spectrum would this radiation be emitted?
Comment on how this compares with observations of the radiation from the inner
regions of active galactic nuclei and how any discrepancies are explained. [4]

(g) How does the predicted temperature of the accretion disc around a supermassive
black hole in an active galactic nucleus compare with the temperatures of accretion
discs around stellar mass black holes in binary star systems? [2]

(h) What besides the Eddington limit determines the accretion rate on to the central
black hole in an active galactic nucleus? [2]

(i) Sketch as a function of frequency the form of the spectrum of an optically thick
accretion disc, labelling the main features. [4]

3. (a) The Navier-Stokes equation which describes the flow of a viscous fluid is

dvi

dt
=
1

ρ

∂σij

∂xj

,

for each dimension i (i = 1, 2, 3) where summation over the repeated index is as-
sumed, and xi is the ith component of the position vector, vi is the ith component
of the velocity of the fluid, and ρ is the density. σij is the stress tensor,

σij = −P δij + η

(

∂vi

∂xj

+
∂vj

∂xi

− 2

3
∇ · v δij

)

,

where P is the pressure and η is the coefficient of viscosity.
By neglecting the pressure contribution and using∇ · v = 0, derive from this the
expression for the rate of viscous dissipation per unit volume

ε = 2 ρ ν eij eij ,

by neglecting the pressure contribution, where ν = η/ρ is the kinematic viscosity
and

eij ≡
1

2

(

∂vi

∂xj

+
∂vj

∂xi

)

,

is the rate of strain tensor. [25 marks]
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(b) Using the fact that

eij eij = R 2

(

dΩ

dR

)2

for a Keplerian accretion disc, show that the viscous dissipation per unit area is

εD = R 2 ν Σ

(

dΩ

dR

)2

,

where R is the distance from the central star, Σ is the surface density, and Ω(R)
is the angular velocity about the central star. [5]

(c) Hence show that in a steady state Keplerian disc,

εD =
9

4
Ω2 ν Σ .

[4]

(d) The product of the kinematic viscosity and surface density at a radial distance R
from a non-rotating star of radius R∗ is

ν Σ =
ṁ

3π



1−
(

R∗
R

)

1

2



 ,

where ṁ is the mass accretion rate in a steady state disc. Derive from this the
expression for the effective temperature Teff of the accretion disc at a radius R
from the central star in a steady state Keplerian disc

Teff =





3GMṁ

8πσR3



 1−
(

R∗
R

)

1

2









1

4

,

where M is the mass of the star and σ is the Stefan-Boltzmann constant. [10]

(e) Using the fact that the half-thickness of an accretion disc H ' cs/Ω, where cs is
the sound speed and Ω the angular velocity at a radius R, obtain an approximate
expression for the half-thickness at a radius R in terms of the mass accretion rate

ṁ and the mass of the central star if cs =
√

RT/µ and R À R∗. Here T is the

temperature, R = 8.3 Jmol−1K−1 is the gas constant, and µ the molecular mass.
Hence make an order of magnitude estimate of the half-thickness at a distance
R = 1AU = 1.5× 1011m from a central star of mass 1M¯ = 2× 1030 kg if the disc
has an accretion rate of ṁ = 10−8 M¯ yr

−1 = 6 × 1014 kg s−1 and R À R∗. You
may use G = 6.7× 10−11 m3 kg−1 s−2 and σ = 5.7× 10−8 Wm−2K−4.
Hence estimate the disc aspect ratio H/R. [6]

7 [End of examination paper.]


